A growing number of studies approach the brain as a complex network, the so-called 'connectome'. Adopting this framework, we examine what types or extent of damage the brain can withstand-referred to as network 'robustness'-and conversely, which kind of distortions can be expected after brain lesions. To this end, we review computational lesion studies and empirical studies investigating network alterations in brain tumour, stroke and traumatic brain injury patients. Common to these three types of focal injury is that there is no unequivocal relationship between the anatomical lesion site and its topological characteristics within the brain network. Furthermore, large-scale network effects of these focal lesions are compared to those of a widely studied multifocal neurodegenerative disorder, Alzheimer's disease, in which central parts of the connectome are preferentially affected. Results indicate that human brain networks are remarkably resilient to different types of lesions, compared to other types of complex networks such as random or scale-free networks. However, lesion effects have been found to depend critically on the topological position of the lesion. In particular, damage to network hub regions-and especially those connecting different subnetworks-was found to cause the largest disturbances in network organization. Regardless of lesion location, evidence from empirical and computational lesion studies shows that lesions cause significant alterations in global network topology. The direction of these changes though remains to be elucidated. Encouragingly, both empirical and modelling studies have indicated that after focal damage, the connectome carries the potential to recover at least to some extent, with normalization of graph metrics being related to improved behavioural and cognitive functioning. To conclude, we highlight possible clinical implications of these findings, point out several methodological limitations that pertain to the study of brain diseases adopting a network approach, and provide suggestions for future research.
This review summarizes the last decade of work by the ENIGMA (Enhancing NeuroImaging Genetics through Meta Analysis) Consortium, a global alliance of over 1400 scientists across 43 countries, studying the human brain in health and disease. Building on large-scale genetic studies that discovered the first robustly replicated genetic loci associated with brain metrics, ENIGMA has diversified into over 50 working groups (WGs), pooling worldwide data and expertise to answer fundamental questions in neuroscience, psychiatry, neurology, and genetics. Most ENIGMA WGs focus on specific psychiatric and neurological conditions, other WGs study normal variation due to sex and gender differences, or development and aging; still other WGs develop methodological pipelines and tools to facilitate harmonized analyses of "big data" (i.e., genetic and epigenetic data, multimodal MRI, and electroencephalography data). These international efforts have yielded the largest neuroimaging studies to date in schizophrenia, bipolar disorder, major depressive disorder, post-traumatic stress disorder, substance use disorders, obsessive-compulsive disorder, attentiondeficit/hyperactivity disorder, autism spectrum disorders, epilepsy, and 22q11.2 deletion syndrome. More recent ENIGMA WGs have formed to study anxiety disorders, suicidal thoughts and behavior, sleep and insomnia, eating disorders, irritability, brain injury, antisocial personality and conduct disorder, and dissociative identity disorder. Here, we summarize the first decade of ENIGMA's activities and ongoing projects, and describe the successes and challenges encountered along the way. We highlight the advantages of collaborative large-scale coordinated data analyses for testing reproducibility and robustness of findings, offering the opportunity to identify brain systems involved in clinical syndromes across diverse samples and associated genetic, environmental, demographic, cognitive, and psychosocial factors.
Taken together, results support the hypothesis that children with DCD show differences in brain structure and function compared with typically developing children. Behaviourally, these differences may affect anticipatory planning and reduce automatization of movement skill, prompting greater reliance on slower feedback-based control and compensatory strategies. Implications for future research, theory development, and clinical practice are discussed.
BackgroundVirtual-reality based rehabilitation (VR) shows potential as an engaging and effective way to improve upper-limb function and cognitive abilities following a stroke. However, an updated synthesis of the literature is needed to capture growth in recent research and address gaps in our understanding of factors that may optimize training parameters and treatment effects.MethodsPublished randomized controlled trials comparing VR to conventional therapy were retrieved from seven electronic databases. Treatment effects (Hedge’s g) were estimated using a random effects model, with motor and functional outcomes between different protocols compared at the Body Structure/Function, Activity, and Participation levels of the International Classification of Functioning.ResultsThirty-three studies were identified, including 971 participants (492 VR participants). VR produced small to medium overall effects (g = 0.46; 95% CI: 0.33–0.59, p < 0.01), above and beyond conventional therapies. Small to medium effects were observed on Body Structure/Function (g = 0.41; 95% CI: 0.28–0.55; p < 0.01) and Activity outcomes (g = 0.47; 95% CI: 0.34–0.60, p < 0.01), while Participation outcomes failed to reach significance (g = 0.38; 95% CI: -0.29-1.04, p = 0.27). Superior benefits for Body Structure/Function (g = 0.56) and Activity outcomes (g = 0.62) were observed when examining outcomes only from purpose-designed VR systems. Preliminary results (k = 4) suggested small to medium effects for cognitive outcomes (g = 0.41; 95% CI: 0.28–0.55; p < 0.01). Moderator analysis found no advantage for higher doses of VR, massed practice training schedules, or greater time since injury.ConclusionVR can effect significant gains on Body Structure/Function and Activity level outcomes, including improvements in cognitive function, for individuals who have sustained a stroke. The evidence supports the use of VR as an adjunct for stroke rehabilitation, with effectiveness evident for a variety of platforms, training parameters, and stages of recovery.Electronic supplementary materialThe online version of this article (10.1186/s12984-018-0370-2) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.