Accurate models of gravitational waves from merging black holes are necessary for detectors to observe as many events as possible while extracting the maximum science. Near the time of merger, the gravitational waves from merging black holes can be computed only using numerical relativity. In this paper, we present a major update of the Simulating eXtreme Spacetimes (SXS) Collaboration catalog of numerical simulations for merging black holes. The catalog contains 2018 distinct configurations (a factor of 11 increase compared to the 2013 SXS catalog), including 1426 spin-precessing configurations, with mass ratios between 1 and 10, and spin magnitudes up to 0.998. The median length of a waveform in the catalog is 39 cycles of the dominant = m = 2 gravitational-wave mode, with the shortest waveform containing 7.0 cycles and the longest 351.3 cycles. We discuss improvements such as correcting for moving centers of mass and extended coverage of the parameter space. We also present a thorough analysis of numerical errors, finding typical truncation errors corresponding to a waveform mismatch of ∼ 10 −4 . The simulations provide remnant masses and spins with uncertainties of 0.03% and 0.1% (90 th percentile), about an order of magnitude better than analytical models for remnant properties. The full catalog is publicly available at https://www.black-holes.org/waveforms . black holes and of the surrounding spacetime [31,32]. Simulations have also been used for visualizations of curved spacetime [33][34][35][36][37][38][39][40], investigations of spin quantities [41], and the relaxation of spacetime to the Kerr solution following merger [42][43][44]. The motion of the black hole horizons and horizon curvature quantities have been used to explore eccentric dynamics [45][46][47][48], spin precession [49][50][51][52], and the first law of binary black hole mechanics [53][54][55][56][57]. These in turn have been compared to analytic post-Newtonian and self-force approximations (see also [58][59][60]), mapping out the bounds of validity of these approximations.A key application of BBH simulations is the accurate modeling of gravitational waves emitted by these systems during their late inspiral, merger, and final ringdown. Waveforms extracted from BBH simulations are essential for analyzing observed gravitational-wave signals from black hole binaries. Indeed, all BBH observations by LIGO and Virgo were analyzed using waveform families that rely on numerical relativity for their construction, most notably effective-one-body waveform models [61-65] and phenomenological waveform models [66][67][68]. Numerical simulations are also central in validating such waveform models [69][70][71][72][73][74][75][76], and were used to validate GW searches [77][78][79]. Waveforms from numerical relativity are also used directly in parameter estimation [80,81], to construct template banks [82], and to construct waveform families without intermediate analytical models, using methods such as reduced order modeling [83][84][85][86]. Today's simula...
We perform ab initio simulations based on finite-temperature density functional theory in order to determine the static and dynamic ion-ion structure factor in aluminum. We calculate the dynamic structure factor via the intermediate scattering function and extract the dispersion relation for the collective excitations. The results are compared with available experimental x-ray scattering data. Very good agreement is obtained for the liquid metal domain. In addition we perform simulations for warm dense aluminum in order to obtain the ion dynamics in this strongly correlated quantum regime. We determine the sound velocity for both liquid and warm dense aluminum which can be checked experimentally using narrow-bandwidth free electron laser radiation.
A long-standing problem in numerical relativity is the satisfactory treatment of future null-infinity. We propose an approach for the evolution of hyperboloidal initial data in which the outer boundary of the computational domain is placed at infinity. The main idea is to apply the 'dual foliation' formalism in combination with hyperboloidal coordinates and the generalized harmonic gauge formulation. The strength of the present approach is that, following the ideas of Zenginoglu, a hyperboloidal layer can be naturally attached to a central region using standard coordinates of numerical relativity applications. Employing a generalization of the standard hyperboloidal slices, developed by Calabrese et. al., we find that all formally singular terms take a trivial limit as we head to null-infinity. A byproduct is a numerical approach for hyperboloidal evolution of nonlinear wave equations violating the null-condition. The height-function method, used often for fixed background spacetimes, is generalized in such a way that the slices can be dynamically 'waggled' to maintain the desired outgoing coordinate lightspeed precisely. This is achieved by dynamically solving the eikonal equation. As a first numerical test of the new approach we solve the 3D flat space scalar wave equation. The simulations, performed with the pseudospectral bamps code, show that outgoing waves are cleanly absorbed at null-infinity and that errors converge away rapidly as resolution is increased.PACS numbers: 04.25.D-, 95.30.Sf
The spectrum of x-ray Thomson scattering is proportional to the dynamic structure factor. An important contribution is the ion feature which describes elastic scattering of x rays off electrons. We apply an ab initio method for the calculation of the form factor of bound electrons, the slope of the screening cloud of free electrons, and the ion-ion structure factor in warm dense beryllium. With the presented method we can calculate the ion feature from first principles. These results will facilitate a better understanding of x-ray scattering in warm dense matter and an accurate measurement of ion temperatures which would allow determining nonequilibrium conditions, e.g., along shock propagation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.