A long-standing problem in numerical relativity is the satisfactory treatment of future null-infinity. We propose an approach for the evolution of hyperboloidal initial data in which the outer boundary of the computational domain is placed at infinity. The main idea is to apply the 'dual foliation' formalism in combination with hyperboloidal coordinates and the generalized harmonic gauge formulation. The strength of the present approach is that, following the ideas of Zenginoglu, a hyperboloidal layer can be naturally attached to a central region using standard coordinates of numerical relativity applications. Employing a generalization of the standard hyperboloidal slices, developed by Calabrese et. al., we find that all formally singular terms take a trivial limit as we head to null-infinity. A byproduct is a numerical approach for hyperboloidal evolution of nonlinear wave equations violating the null-condition. The height-function method, used often for fixed background spacetimes, is generalized in such a way that the slices can be dynamically 'waggled' to maintain the desired outgoing coordinate lightspeed precisely. This is achieved by dynamically solving the eikonal equation. As a first numerical test of the new approach we solve the 3D flat space scalar wave equation. The simulations, performed with the pseudospectral bamps code, show that outgoing waves are cleanly absorbed at null-infinity and that errors converge away rapidly as resolution is increased.PACS numbers: 04.25.D-, 95.30.Sf
Discontinuous Galerkin (DG) methods coupled to weighted essentially nonoscillatory (WENO) algorithms allow high order convergence for smooth problems and for the simulation of discontinuities and shocks. In this work, we investigate WENO-DG algorithms in the context of numerical general relativity, in particular for general relativistic hydrodynamics. We implement the standard WENO method at different orders, a compact (simple) WENO scheme, as well as an alternative subcell evolution algorithm. To evaluate the performance of the different numerical schemes, we study nonrelativistic, special relativistic, and general relativistic test beds. We present the first three-dimensional simulations of general relativistic hydrodynamics, albeit for a fixed spacetime background, within the framework of WENO-DG methods. The most important test bed is a single Tolman-Oppenheimer-Volkoff star in three dimensions, showing that long term stable simulations of single isolated neutron stars can be obtained with WENO-DG methods.
Motivated by the desire for highly accurate numerical computations of compact binary spacetimes in the era of gravitational wave astronomy, we reexamine hyperbolicity and well-posedness of the initial value problem for popular models of general relativistic fluids. Our analysis relies heavily on the dual-frame formalism, which allows us to work in the Lagrangian frame, where computation is relatively easy, before transforming to the desired Eulerian form. This general strategy allows for the construction of compact expressions for the characteristic variables in a highly economical manner. General relativistic hydrodynamics, ideal magnetohydrodynamics, and resistive magnetohydrodynamics are considered in turn. In the first case, we obtain a simplified form of earlier expressions. In the second, we show that the flux-balance law formulation used in typical numerical applications is only weakly hyperbolic and thus does not have a well-posed initial value problem.
We show how the basic idea of parabolic Jacobi relaxation can be modified to obtain a new class of hyperbolic relaxation schemes that are suitable for the solution of elliptic equations. Some of the analytic and numerical properties of hyperbolic relaxation are examined. We describe its implementation as a first order system in a pseudospectral evolution code, demonstrating that certain elliptic equations can be solved within a framework for hyperbolic evolution systems. Applications include various initial data problems in numerical general relativity. In particular we generate initial data for the evolution of a massless scalar field, a single neutron star, and binary neutron star systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.