We demonstrate a 200G capable WDM O-band optical transceiver comprising a 4-element array of Silicon Photonics ring modulators (RM) and Ge photodiodes (PD) co-packaged with a SiGe BiCMOS integrated driver and a SiGe transimpedance amplifier (TIA) chip. A 4×50 Gb/s data modulation experiment revealed an average extinction ratio (ER) of 3.17 dB, with the transmitter exhibiting a total energy efficiency of 2 pJ/bit. Data reception has been experimentally validated at 50 Gb/s per lane, achieving an interpolated 10E-12 bit error rate (BER) for an input optical modulation amplitude (OMA) of −9.5 dBm and a power efficiency of 2.2 pJ/bit, yielding a total power efficiency of 4.2 pJ/bit for the transceiver, including heater tuning requirements. This electro-optic subassembly provides the highest aggregate data-rate among O-band RM-based silicon photonic transceiver implementations, highlighting its potential for next generation WDM Ethernet transceivers.
Abstract-High speed optical interconnects require low-power compact electro-optical transmit modules comprising driver circuits and optical modulators. This paper presents a low power 56 Gb/s non-return-to-zero CMOS inverter based driver in 28 nm fully depleted silicon-on-insulator CMOS driving a 46 GHz silicon photonic microring modulator. The driver delivers 1 Vpp to the microring modulator from a 75 mVpp input while only consuming 40 mW (710 fJ/bit at 56 Gb/s). The realized transmitter shows 4 dB extinction ratio when running of a 1 V supply voltage. Transmission experiments up to 2 km of single mode fiber show a bit-error-ratio less than 1 · 10
Abstract-Efficient packaging of integrated photonic chips (PIC) on host substrates is essential to fully deploy their potential and to co-integrate electronic chips (EIC). A highperformance electro-optical printed circuit board (EOCB), which exhibits a combined electrical and optical interface, is proposed to serve as integration platform for PICs. This enables an assembly approach which combines two assembly steps, the optical and the electrical one, into one single step. Whereby, the two processes usually operate in quite different accuracy regimes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.