Two distinct G protein-coupled purinergic receptors, P2Y1 and P2Y12, mediate ADP-driven platelet activation. The clinical effectiveness of P2Y12 blockade is well established. Recent preclinical data suggest that P2Y1 and P2Y12 inhibition provide equivalent antithrombotic efficacy, while targeting P2Y1 has the potential for reduced bleeding liability. In this account, the discovery of a 2-(phenoxypyridine)-3-phenylurea chemotype that inhibited ADP-mediated platelet aggregation in human blood samples is described. Optimization of this series led to the identification of compound 16, 1-(2-(2-tert-butylphenoxy)pyridin-3-yl)-3-4-(trifluoromethoxy)phenylurea, which demonstrated a 68 ± 7% thrombus weight reduction in an established rat arterial thrombosis model (10 mg/kg plus 10 mg/kg/h) while only prolonging cuticle and mesenteric bleeding times by 3.3- and 3.1-fold, respectively, in provoked rat bleeding time models. These results suggest that a P2Y1 antagonist could potentially provide a safe and efficacious antithrombotic profile.
2,3,4,5-Tetrahydro-1-(imidazol-4-ylalkyl)-1,4-benzodiazepines were found to be potent inhibitors of farnesyltransferase (FT). A hydrophobic substituent at the 4-position of the benzodiazepine, linked via a hydrogen bond acceptor, was important to enzyme inhibitory activity. An aryl ring at position 7 or a hydrophobic group linked to the 8-position through an amide, carbamate, or urea linkage was also important for potent inhibition. 2,3,4, 5-Tetrahydro-1-(1H-imidazol-4-ylmethyl)-7-(4-pyridinyl)-4-[2-(t rifluo romethoxy)benzoyl]-1H-1,4-benzodiazepine (36), with an FT IC(50) value of 24 nM, produced 85% phenotypic reversion of Ras transformed NIH 3T3 cells at 1.25 microM and had an EC(50) of 160 nM for inhibition of anchorage-independent growth in soft agar of H-Ras transformed Rat-1 cells. Selected analogues demonstrated ip antitumor activity against an ip Rat-1 tumor in mice.
A novel series of dihydro- and tetrahydrotriazolopyridazine-1,3-dione-based amino acid derivatives were identified as very potent motilin receptor agonists. Incorporating one additional phenylethyl glycinamide subunit to 1 (EC(50) = 660 nM) was found to improve in vitro potency approximately 3000-fold, resulting in compound 10 (EC(50) = 0.22 nM). The more potent enantiomer 11A has an EC(50) of 0.047 nM in the motilin receptor functional assay and a K(i) of 0.7 nM in the binding assay. In addition, compound 11A was shown to have a significantly reduced tendency to cause receptor desensitization as compared with the motilin receptor agonist ABT-229.
Continued structure-activity relationship (SAR) exploration within our previously disclosed azolopyrimidine containing dipeptidyl peptidase-4 (DPP4) inhibitors led us to focus on an imidazolopyrimidine series in particular. Further study revealed that by replacing the aryl substitution on the imidazole ring with a more polar carboxylic ester or amide, these compounds displayed not only increased DPP4 binding activity but also significantly reduced human ether-a-go-go related gene (hERG) and sodium channel inhibitory activities. Additional incremental adjustment of polarity led to permeable molecules which exhibited favorable pharmacokinetic (PK) profiles in preclinical animal species. The active site binding mode of these compounds was determined by X-ray crystallography as exemplified by amide 24c. A subsequent lead molecule from this series, (+)-6-(aminomethyl)-5-(2,4-dichlorophenyl)-N-(1-ethyl-1H-pyrazol-5-yl)-7-methylimidazo[1,2-a]pyrimidine-2-carboxamide (24s), emerged as a potent, selective DPP4 inhibitor that displayed excellent PK profiles and in vivo efficacy in ob/ob mice.
MGAT2
inhibition is a potential therapeutic approach for the treatment
of metabolic disorders. High-throughput screening of the BMS internal
compound collection identified the aryl dihydropyridinone compound 1 (hMGAT2 IC50 = 175 nM) as a hit. Compound 1 had moderate potency against human MGAT2, was inactive vs
mouse MGAT2 and had poor microsomal metabolic stability. A novel chemistry
route was developed to synthesize aryl dihydropyridinone analogs to
explore structure–activity relationship around this hit, leading
to the discovery of potent and selective MGAT2 inhibitors 21f, 21s, and 28e that are stable to liver
microsomal metabolism. After triaging out 21f due to
its inferior in vivo potency, pharmacokinetics, and
structure-based liabilities and tetrazole 28e due to
its inferior channel liability profile, 21s (BMS-963272)
was selected as the clinical candidate following demonstration of
on-target weight loss efficacy in the diet-induced obese mouse model
and an acceptable safety and tolerability profile in multiple preclinical
species.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.