(S)-Equol is the terminal metabolite of daidzein and plays important roles in human health. However, due to anaerobic inefficiency, limited productivity in (S)-equol-producing strains often hinders (S)-equol mass production. Here, a multi-enzyme cascade system was designed to generate a higher (S)-equol titer. First, full reversibility of the (S)-equol synthesis pathway was found and a blocking reverse conversion strategy was established. As biosynthetic genes are present in the microbial genome, an effective daidzein reductase was chosen using evolutionary principles. And our analyses showed that NADPH was crucial for the pathway. In response to this, a novel NADPH pool was redesigned after analyzing a cofactor metabolism model. By adjusting synthesis pathway genes at the right expression level, the entire synthesis pathway can take place smoothly. Thus, the cascade system was optimized by regulating the gene expression intensity. Finally, after optimizing fermentation conditions, a 5 L bioreactor was used to generate a high (S)-equol production titer (3418.5 mg/L), with a conversion rate of approximately 85.9%. This study shows a feasible green process route for the production of (S)-equol.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.