Effect-directed analysis (EDA) can be useful in identifying and evaluating potential toxic chemicals in matrixes. Previous investigations of extracts of sediments from the upper Danube River in Germany revealed acute nonspecific and mechanism-specific toxicity as determined by several bioassays. In the present study, EDA was used to further characterize these sediments and identify groups of potentially toxic chemicals. Four extracts of sediments were subjected to a novel fractionation scheme coupled with identification of chemicals to characterize their ability to disrupt steroidogenesis or cause mutagenic and/or teratogenic effects. All four whole extracts of sediment caused significant alteration of steroidogenesis and were mutagenic as well as teratogenic. The whole extracts of sediments were separated into 18 fractions and these fractions were then subjected to the same bioassays as the whole extracts. Fractions 7 to 15 of all four extracts were consistently more potent in both the Ames fluctuation and H295R assays. Much of this toxicity could be attributed to polycyclic aromatic hydrocarbons, sterols, and in fraction 7-naphthoic acids. Because the fraction containing polychlorinated biphenyls, polychlorodibenzodioxin/furan, dichlorodiphenyltrichloroethane, and several organophosphates did not cause any observable effects on hormone production or a mutagenic response, or were not detected in any of the samples, these compounds could be eliminated as causative agents for the observed effects. These results demonstrate the value of using EDA, which uses multiple bioassays and new fractionation techniques to assess toxicity. Furthermore, to our knowledge this is the first study using the recently developed H295R assay within EDA strategies.
Purpose Traditionally, methods for sediment extractions are characterised using chemical analyses. However, in order to evaluate sediment extracts with regard to biological effects and, thus, bioaccessibility, extraction methods have to be compared to effect data obtained from experiments with in situ exposure scenarios, i.e., sediment contact tests. This study compares four extraction methods and sediment contact test data from a previous project with respect to predictive power in the fish embryo test with zebrafish (Danio rerio). Materials and methods A natural and an artificial sediment spiked with a mixture of six organic pollutants (2,4-dinitrophenol, diuron, fluoranthene, nonylphenol, parathion and pentachlorophenol) were extracted using (a) membrane dialysis extraction (MDE), (b) a Soxhlet procedure, (c) hydroxypropyl-β-cyclodextrin (HPCD) or (d) Tenax ® -TA. Whereas the former two are regarded being exhaustive with respect to non-covalently bound contaminants, the latter two are considered to predict bioaccessibility. Resulting extracts were tested in the fish embryo assay with D. rerio for embryotoxic and teratogenic potential. Results and discussion Mortalities caused by organic extracts from Soxhlet extraction and MDE were high. However, HPCD extracts turned out to be at least as effective as extracts obtained with these two methods. One possible reason might be short ageing time of the spiked sediments. Only Tenax ® -TA extracts gave results comparable to the sediment contact assay for natural sediment, but revealed low reproducibility. Significant differences between natural and artificial sediment were found for extracts obtained with techniques using native (i.e., nonfreeze-dried) sediments, i.e., HPCD and Tenax ® -TA. In contrast, MDE and Soxhlet extracts used freeze-dried sediment and did not differentiate between natural and artificial sediment. Therefore, freeze-drying has likely altered and equalised sediment properties that influence accessibility, such as composition of bacterial communities and organic matter quality. Conclusions Four extraction methods were successfully characterised with respect to their stringency and predictiveness for bioaccessibility. MDE was confirmed as an alternative to Soxhlet extraction. High mortalities induced by HPCD extracts underline the need to include ageing into consideration when assessing sediments. Although Tenax ® -TA may basically be used to predict bioaccessibility in the fish embryo test, the high variability observed warrants further investigation of the relation between effect and extractability. Apparently, freeze-drying can severely affect sediment properties, potentially eliminating individual properties of natural sediments.
Predicting the bioavailability and effects of metals in sediments is of major concern in context with sediment risk assessment. This study aimed to investigate the bioavailability and molecular effects of metals spiked into riverine sediments to zebrafish (Danio rerio) embryos. Embryos were exposed to a natural and an artificial sediment spiked with cadmium (Cd), copper (Cu), nickel (Ni) and zinc (Zn) individually or as a mixture at concentrations ranging from 150 to 3000 mg/kg dry weight (dw) over 48 h, and uptake of metals was determined. Furthermore, transcript abundances of the metallothioneins MT1 and MT2, the metal-responsive element-binding transcription factor (MTF) and the genes sod1, hsp70 and hsp90α1 were measured as indicators of metal-induced or general cellular stress. D. rerio embryos accumulated metals from sediments at concentrations up to 100 times greater than those spiked to the sediment with the greatest bioaccumulation factor (BAF) for Cu from artificial sediment (275.4 ± 41.9 (SD)). Embryos accumulated greater concentrations of all metals from artificial than from natural sediment, and accumulation was greater when embryos were exposed to individual metals than when they were exposed to the mixture. Exposure of embryos to Zn or the mixture exhibited up to 30-fold greater transcript abundances of MT1, MT2 and hsp70 compared to controls which is related to significant uptake of Zn from the sediment. Further changes in transcript abundances could not be related to a significant uptake of metals from sediments. These studies reveal that metals from spiked sediments are bioavailable to D. rerio embryos directly exposed to sediments and that the induction of specific genes can be used as biomarkers for the exposure of early life stages of zebrafish to metal-contaminated sediments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.