Holant problem is a general framework to study the computational complexity of counting problems. We prove a complexity dichotomy theorem for Holant problems over the Boolean domain with non-negative weights. It is the first complete Holant dichotomy where constraint functions are not necessarily symmetric.Holant problems are indeed read-twice #CSPs. Intuitively, some #CSPs that are #P-hard become tractable when restricted to read-twice instances. To capture them, we introduce the Block-rank-one condition. It turns out that the condition leads to a clear separation. If a function set F satisfies the condition, then F is of affine type or product type. Otherwise (a) Holant(F) is #P-hard; or (b) every function in F is a tensor product of functions of arity at most 2; or (c) F is transformable to a product type by some real orthogonal matrix. Holographic transformations play an important role in both the hardness proof and the characterization of tractability.
Error probability is a popular and well-studied optimization criterion in discriminating non-orthogonal quantum states. It captures the threat from an adversary who can only query the actual state once. However, when the adversary is able to use a brute-force strategy to query the state, discrimination measurement with minimum error probability does not necessarily minimize the number of queries to get the actual state. In light of this, we take Massey's guesswork as the underlying optimization criterion and study the problem of minimum guesswork discrimination. We show that this problem can be reduced to a semidefinite programming problem. Necessary and sufficient conditions when a measurement achieves minimum guesswork are presented. We also reveal the relation between minimum guesswork and minimum error probability. We show that the two criteria generally disagree with each other, except for the special case with two states. Both upper and lower information-theoretic bounds on minimum guesswork are given. For geometrically uniform quantum states, we provide sufficient conditions when a measurement achieves minimum guesswork. Moreover, we give the necessary and sufficient condition under which making no measurement at all would be the optimal strategy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.