Topological solitons commonly appear as energy-minimizing field configurations, but examples of stable, spatially localized objects with coexisting solitonic structures and singular defects are rare. Here we use a nonpolar chiral liquid crystal system to show how twist domain walls can co-self-assemble with vortices to form spatially localized topological objects with spontaneous folding. These soliton–vortex assemblies, which we call ‘möbiusons’, have a topology of the molecular alignment field resembling that of the Möbius strip’s surface and package localized field excitations into folded structures within a confinement-frustrated uniform far-field background. Upon supplying energy in the form of electric pulses, möbiusons with different overall symmetries of structure exhibit folding-dependent rotational and translational motions, as well as topological cargo-carrying abilities that can be controlled by tuning the amplitude and frequency of the applied fields. We demonstrate on-demand transformations between various möbiusons and show examples of encoding information by manipulating folds in such structures. A model based on the energetics of solitons and vortices provides insights into the origins of the folding instability, whereas minimization of the Landau–de Gennes free energy closely reproduces details of their internal structure. Our findings may provide a route towards topology-enabled light-steering designs.
Topological solitons have knotted continuous field configurations embedded in a uniform background, and occur in cosmology, biology, and electromagnetism. However, real‐time observation of their morphogenesis and dynamics is still challenging because their size and timescale are enormously large or tiny. Liquid crystal (LC) structures are promising candidates for a model‐system to study the morphogenesis of topological solitons, enabling direct visualization due to the proper size and timescale. Here, a new way is found to rationalize the real‐time observation of the generation and transformation of topological solitons using cholesteric LCs confined in patterned substrates. The experimental demonstration shows the topologically protected structures arise via the transformation of topological defects. Numerical modeling based on minimization of free energy closely reconstructs the experimental findings. The fundamental insights obtained from the direct observations pose new theoretical challenges in understanding the morphogenesis of different types of topological solitons within a broad range of scales.
Topological Soliton Arrays In article number 2201749, Ivan Smalyukh, Dong Ki Yoon, and co‐workers report a new way to rationalize the real‐time observation of the generation and transformation of topological solitons using cholesteric liquid crystals confined in patterned substrates. The line textures are cholesteric fingers of the third kind (CF‐3s), in which 1D topological solitons called twist walls are stabilized by two twist disclination lines, which are nucleated and grown from the air pockets on the top view. This image represents that the CF‐3s array is formed like an infinite maze.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.