Erysipelothrix rhusiopathiae infections re-emerged as a matter of great concern particularly in the poultry industry. In contrast to porcine isolates, molecular epidemiological traits of avian E. rhusiopathiae isolates are less well known. Thus, we aimed to (i) develop a multilocus sequence typing (MLST) scheme for E. rhusiopathiae, (ii) study the congruence of strain grouping based on pulsed-field gel electrophoresis (PFGE) and MLST, (iii) determine the diversity of the dominant immunogenic protein SpaA, and (iv) examine the distribution of genes putatively linked with virulence among field isolates from poultry (120), swine (24) and other hosts (21), including humans (3). Using seven housekeeping genes for MLST analysis we determined 72 sequence types (STs) among 165 isolates. This indicated an overall high diversity, though 34.5% of all isolates belonged to a single predominant ST-complex, STC9, which grouped strains from birds and mammals, including humans, together. PFGE revealed 58 different clusters and congruence with the sequence-based MLST-method was not common. Based on polymorphisms in the N-terminal hyper-variable region of SpaA the isolates were classified into five groups, which followed the phylogenetic background of the strains. More than 90% of the isolates harboured all 16 putative virulence genes tested and only intI, encoding an internalin-like protein, showed infrequent distribution. MLST data determined E. rhusiopathiae as weakly clonal species with limited host specificity. A common evolutionary origin of isolates as well as shared SpaA variants and virulence genotypes obtained from avian and mammalian hosts indicates common reservoirs, pathogenic pathways and immunogenic properties of the pathogen.Electronic supplementary materialThe online version of this article (doi:10.1186/s13567-015-0216-x) contains supplementary material, which is available to authorized users.
Multicentric T-cell lymphomas were diagnosed in two birds from separate zoological collections: one in a 27-year-old female Humboldt penguin (Spheniscus humboldti) and the second in an adult pink-backed pelican (Pelecanus rufescens). The main clinical sign in the penguin was dysphagia caused by lymphoma formation in the esophagus. Besides the esophageal lymphoma, neoplastic lymphoid cells were observed in the adrenal glands, liver, kidneys, lung, proventriculus, and gizzard. The pelican was found dead without a clinical history. Neoplastic lymphoid cells were observed in the kidneys, liver, pancreas, spleen, ventriculus, and small intestine. Neoplastic cells of the penguin as well as of the pelican were immunoreactive to CD3 antigen, suggesting the lymphomas were of T-cell origin. In both cases, test results were negative for Marek's disease virus, avian leukosis virus, and reticuloendotheliosis virus. In the pelican, a skin melanoma was diagnosed on the left throat pouch in addition to the multicentric T-cell lymphoma.
BackgroundSudden limb paresis is a common problem in White Leghorn flocks, affecting about 1% of the chicken population before achievement of sexual maturity. Previously, a similar clinical syndrome has been reported as being caused by inflammatory demyelination of peripheral nerve fibres. Here, we investigated in detail the immunopathology of this paretic syndrome and its possible resemblance to human neuropathies.MethodsNeurologically affected chickens and control animals from one single flock underwent clinical and neuropathological examination. Peripheral nervous system (PNS) alterations were characterised using standard morphological techniques, including nerve fibre teasing and transmission electron microscopy. Infiltrating cells were phenotyped immunohistologically and quantified by flow cytometry. The cytokine expression pattern was assessed by quantitative real-time PCR (qRT-PCR). These investigations were accomplished by MHC genotyping and a PCR screen for Marek's disease virus (MDV).ResultsSpontaneous paresis of White Leghorns is caused by cell-mediated, inflammatory demyelination affecting multiple cranial and spinal nerves and nerve roots with a proximodistal tapering. Clinical manifestation coincides with the employment of humoral immune mechanisms, enrolling plasma cell recruitment, deposition of myelin-bound IgG and antibody-dependent macrophageal myelin-stripping. Disease development was significantly linked to a 539 bp microsatellite in MHC locus LEI0258. An aetiological role for MDV was excluded.ConclusionsThe paretic phase of avian inflammatory demyelinating polyradiculoneuritis immunobiologically resembles the late-acute disease stages of human acute inflammatory demyelinating polyneuropathy, and is characterised by a Th1-to-Th2 shift.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.