Zoonotic tick-borne diseases are an increasing health burden in Europe and there is speculation that this is partly due to climate change affecting vector biology and disease transmission. Data on the vector tick Ixodes ricinus suggest that an extension of its northern and altitude range has been accompanied by an increased prevalence of tick-borne encephalitis. Climate change may also be partly responsible for the change in distribution of Dermacentor reticulatus. Increased winter activity of I. ricinus is probably due to warmer winters and a retrospective study suggests that hotter summers will change the dynamics and pattern of seasonal activity, resulting in the bulk of the tick population becoming active in the latter part of the year. Climate suitability models predict that eight important tick species are likely to establish more northern permanent populations in a climate-warming scenario. However, the complex ecology and epidemiology of such tick-borne diseases as Lyme borreliosis and tick-borne encephalitis make it difficult to implicate climate change as the main cause of their increasing prevalence. Climate change models are required that take account of the dynamic biological processes involved in vector abundance and pathogen transmission in order to predict future tick-borne disease scenarios.
The goal of this paper is to present up-to-date maps depicting the geographical distribution of Dermacentor species in Europe based on georeferenced sampling sites. Therefore, a dataset was compiled, resulting in 1286 D. marginatus (Sulzer, 1776) and 1209 D. reticulatus (Fabricius, 1794) locations. Special emphasis is given to the region of the European Alps depicting a presumable climate barrier of the mountains and to overlaps in the distribution of both species as well as on the situation in eastern European countries. For the latter newly described Dermacentor findings comprise 59 locations in Romania and 62 locations in Ukraine. The geographical distributions of both species in Europe range from Portugal to Ukraine (and continue to the east of Kazakhstan). Although it is well known that D. marginatus is adapted to a warmer and drier climate at more southern latitudes and D. reticulatus to a moderately moist climate at more northern latitudes, the distribution limits of both species were not well known. Here, the northern and southern distribution limits for both species in Europe, as determined from the georeferenced database, were specified for D. marginatus by the belt of 33-51° N latitude and for D. reticulatus by the belt of 41-57° N latitude. Thus, overlapping species distributions were found between 41° N and 51° N.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.