Knowledge about visualization tasks plays an important role in choosing or building suitable visual representations to pursue them. Yet, tasks are a multi-faceted concept and it is thus not surprising that the many existing task taxonomies and models all describe different aspects of tasks, depending on what these task descriptions aim to capture. This results in a clear need to bring these different aspects together under the common hood of a general design space of visualization tasks, which we propose in this paper. Our design space consists of five design dimensions that characterize the main aspects of tasks and that have so far been distributed across different task descriptions. We exemplify its concrete use by applying our design space in the domain of climate impact research. To this end, we propose interfaces to our design space for different user roles (developers, authors, and end users) that allow users of different levels of expertise to work with it.
Visual analytics (VA) is typically applied in scenarios where complex data has to be analyzed. Unfortunately, there is a natural correlation between the complexity of the data and the complexity of the tools to study them. An adverse effect of complicated tools is that analytical goals are more difficult to reach. Therefore, it makes sense to consider methods that guide or assist users in the visual analysis process. Several such methods already exist in the literature, yet we are lacking a general model that facilitates in-depth reasoning about guidance. We establish such a model by extending van Wijk's model of visualization with the fundamental components of guidance. Guidance is defined as a process that gradually narrows the gap that hinders effective continuation of the data analysis. We describe diverse inputs based on which guidance can be generated and discuss different degrees of guidance and means to incorporate guidance into VA tools. We use existing guidance approaches from the literature to illustrate the various aspects of our model. As a conclusion, we identify research challenges and suggest directions for future studies. With our work we take a necessary step to pave the way to a systematic development of guidance techniques that effectively support users in the context of VA.
Apart from explicit node-link representations, implicit visualizations and especially the Treemap as their frontrunner have acquired a solid position among the available techniques to visualize hierarchies. Their advantage is a highly space-efficient graphical representation that does not require explicit drawing of edges. In this paper, we survey the design space for this class of visualization techniques. We establish the design space along the four axes of dimensionality, edge representation, node representation, and layout by examining existing implicit hierarchy visualization techniques. The survey is completed by casting some light into regions of the design space that have not yet been explored. Our design space is not a mere theoretical construct, but a practically usable tool for rapid visualization development. To that end, we discuss a software implementation of the introduced design space.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.