Visual analytics (VA) is typically applied in scenarios where complex data has to be analyzed. Unfortunately, there is a natural correlation between the complexity of the data and the complexity of the tools to study them. An adverse effect of complicated tools is that analytical goals are more difficult to reach. Therefore, it makes sense to consider methods that guide or assist users in the visual analysis process. Several such methods already exist in the literature, yet we are lacking a general model that facilitates in-depth reasoning about guidance. We establish such a model by extending van Wijk's model of visualization with the fundamental components of guidance. Guidance is defined as a process that gradually narrows the gap that hinders effective continuation of the data analysis. We describe diverse inputs based on which guidance can be generated and discuss different degrees of guidance and means to incorporate guidance into VA tools. We use existing guidance approaches from the literature to illustrate the various aspects of our model. As a conclusion, we identify research challenges and suggest directions for future studies. With our work we take a necessary step to pave the way to a systematic development of guidance techniques that effectively support users in the context of VA.
We present MotionExplorer, an exploratory search and analysis system for sequences of human motion in large motion capture data collections. This special type of multivariate time series data is relevant in many research fields including medicine, sports and animation. Key tasks in working with motion data include analysis of motion states and transitions, and synthesis of motion vectors by interpolation and combination. In the practice of research and application of human motion data, challenges exist in providing visual summaries and drill-down functionality for handling large motion data collections. We find that this domain can benefit from appropriate visual retrieval and analysis support to handle these tasks in presence of large motion data. To address this need, we developed MotionExplorer together with domain experts as an exploratory search system based on interactive aggregation and visualization of motion states as a basis for data navigation, exploration, and search. Based on an overview-first type visualization, users are able to search for interesting sub-sequences of motion based on a query-by-example metaphor, and explore search results by details on demand. We developed MotionExplorer in close collaboration with the targeted users who are researchers working on human motion synthesis and analysis, including a summative field study. Additionally, we conducted a laboratory design study to substantially improve MotionExplorer towards an intuitive, usable and robust design. MotionExplorer enables the search in human motion capture data with only a few mouse clicks. The researchers unanimously confirm that the system can efficiently support their work.
We propose a method for the semi-automated refinement of the results of feature subset selection algorithms. Feature subset selection is a preliminary step in data analysis which identifies the most useful subset of features (columns) in a data table. So-called filter techniques use statistical ranking measures for the correlation of features. Usually a measure is applied to all entities (rows) of a data table. However, the differing contributions of subsets of data entities are masked by statistical aggregation. Feature and entity subset selection are, thus, highly interdependent. Due to the difficulty in visualizing a high-dimensional data table, most feature subset selection algorithms are applied as a black box at the outset of an analysis. Our visualization technique, SmartStripes, allows users to step into the feature subset selection process. It enables the investigation of dependencies and interdependencies between different feature and entity subsets. A user may even choose to control the iterations manually, taking into account the ranking measures, the contributions of different entity subsets, as well as the semantics of the features
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.