Visual analytics (VA) system development started in academic research institutions where novel visualization techniques and open source toolkits were developed. Simultaneously, small software companies, sometimes spin-offs from academic research institutions, built solutions for specific application domains. In recent years we observed the following trend: some small VA companies grew exponentially; at the same time some big software vendors such as IBM and SAP started to acquire successful VA companies and integrated the acquired VA components into their existing frameworks. Generally the application domains of VA systems have broadened substantially. This phenomenon is driven by the generation of more and more data of high volume and complexity, which leads to an increasing demand for VA solutions from many application domains. In this paper we survey a selection of state-of-the-art commercial VA frameworks, complementary to an existing survey on open source VA tools. From the survey results we identify several improvement opportunities as future research directions.
Color, as one of the most effective visual variables, is used in many techniques to encode and group data points according to different features. Relations between features and groups appear as visual patterns in the visualization. However, optical illusions may bias the perception at the first level of the analysis process. For instance, in pixel-based visualizations contrast effects make pixels appear brighter if surrounded by a darker area, which distorts the encoded metric quantity of the data points. Even if we are aware of these perceptual issues, our visual cognition system is not able to compensate these effects accurately. To overcome this limitation, we present a color optimization algorithm based on perceptual metrics and color perception models to reduce physiological contrast or color effects. We evaluate our technique with a user study and find that the technique doubles the accuracy of users comparing and estimating color encoded data values. Since the presented technique can be used in any application without adaption to the visualization itself, we are able to demonstrate its effectiveness on data visualizations in different domains.
We present a system to analyze time-series data in sensor networks. Our
Color is one of the most important visual variables since it can be combined with any other visual mapping to encode information without using additional space on the display. Encoding one or two dimensions with color is widely explored and discussed in the field. Also mapping multi-dimensional data to color is applied in a vast number of applications, either to indicate similar, or to discriminate between different elements or (multi-dimensional) structures on the screen. A variety of 2D colormaps exists in literature, covering a large variance with respect to different perceptual aspects. Many of the colormaps have a different perspective on the underlying data structure as a consequence of the various analysis tasks that exist for multivariate data. Thus, a large design space for 2D colormaps exists which makes the development and use of 2D colormaps cumbersome. According to our literature research, 2D colormaps have not been subject of in-depth quality assessment. Therefore, we present a survey of static 2D colormaps as applied for information visualization and related fields. In addition, we map seven devised quality assessment measures for 2D colormaps to seven relevant tasks for multivariate data analysis. Finally, we present the quality assessment results of the 2D colormaps with respect to the seven analysis tasks, and contribute guidelines about which colormaps to select or create for each analysis task
Commercial buildings are significant consumers of electrical power. Also, energy expenses are an increasing cost factor. Many companies therefore want to save money and reduce their power usage. Building administrators have to first understand the power consumption behavior, before they can devise strategies to save energy. Second, sudden unexpected changes in power consumption may hint at device failures of critical technical infrastructure. The goal of our research is to enable the analyst to understand the power consumption behavior and to be aware of unexpected power consumption values. In this paper, we introduce a novel unsupervised anomaly detection algorithm and visualize the resulting anomaly scores to guide the analyst to important time points. Different possibilities for visualizing the power usage time series are presented, combined with a discussion of the design choices to encode the anomaly values. Our methods are applied to real world time series of power consumption, logged in a hierarchical sensor network.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.