We propose a method for the semi-automated refinement of the results of feature subset selection algorithms. Feature subset selection is a preliminary step in data analysis which identifies the most useful subset of features (columns) in a data table. So-called filter techniques use statistical ranking measures for the correlation of features. Usually a measure is applied to all entities (rows) of a data table. However, the differing contributions of subsets of data entities are masked by statistical aggregation. Feature and entity subset selection are, thus, highly interdependent. Due to the difficulty in visualizing a high-dimensional data table, most feature subset selection algorithms are applied as a black box at the outset of an analysis. Our visualization technique, SmartStripes, allows users to step into the feature subset selection process. It enables the investigation of dependencies and interdependencies between different feature and entity subsets. A user may even choose to control the iterations manually, taking into account the ranking measures, the contributions of different entity subsets, as well as the semantics of the features
In this paper we present a new Focus & Context technique for the exploration of large, abstract graphs. Most Focus & Context techniques present context in a visual way. In contrast, our technique uses a symbolic representation: while the focus is a set of visible nodes, labelled signposts provide cues for the context -off-screen regions of the graph -and indicate the direction of the shortest path linking the visible nodes to these regions. We show how the regions are defined and how they are selected dynamically, depending on the visible nodes. To define the set of visible nodes we use an approach developed by van Ham and Perer that dynamically extracts a subgraph based on an initial focal node and a degree-of-interest function. This approach is extended to support multiple focal nodes. With the symbolic visualization, potentially interesting regions of a graph may be represented with a very small visual footprint. We conclude the paper with an initial user study to evaluate the effectiveness of the signposts for navigation tasks.
Matrix visualization is an established technique in the analysis of relational data. It is applicable to large, dense networks, where node-link representations may not be effective. Recently, domains have emerged in which the comparative analysis of sets of matrices of potentially varying size is relevant. For example, to monitor computer network traffic a dynamic set of hosts and their peer-to-peer connections on different ports must be analysed. A matrix visualization focused on the display of one matrix at a time cannot cope with this task. We address the research problem of the visual analysis of sets of matrices. We present a technique for comparing matrices of potentially varying size. Our approach considers the rows and/or columns of a matrix as the basic elements of the analysis. We project these vectors for pairs of matrices into a low-dimensional space which is used as the reference to compare matrices and identify relationships among them. Bipartite graph matching is applied on the projected elements to compute a measure of distance. A key advantage of this measure is that it can be interpreted and manipulated as a visual distance function, and serves as a comprehensible basis for ranking, clustering and comparison in sets of matrices. We present an interactive system in which users may explore the matrix distances and understand potential differences in a set of matrices. A flexible semantic zoom mechanism enables users to navigate through sets of matrices and identify patterns at different levels of detail. We demonstrate the effectiveness of our approach through a case study and provide a technical evaluation to illustrate its strengths.
In recent years, the quantity of time series data generated in a wide variety of domains grown consistently. Thus, it is difficult for analysts to process and understand this overwhelming amount of data. In the specific case of time series data another problem arises: time series can be highly interrelated. This problem becomes even more challenging when a set of parameters influences the progression of a time series. However, while most visual analysis techniques support the analysis of short time periods, e.g. one day or one week, they fail to visualize large-scale time series, ranging over one year or more. In our approach we present a time series matrix visualization that tackles this problem. Its primary advantages are that it scales to a large number of time series with different start and end points and allows for the visual comparison / correlation analysis of a set of influencing factors. To evaluate our approach, we applied our technique to a real-world data set, showing the impact of local weather conditions on the efficiency of photovoltaic power plants.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.