The interaction between fluid and structure occurs in a wide range of engineering problems. The solution for such problems is based on the relations of continuum mechanics and is mostly solved with numerical methods. It is a computational challenge to solve such problems because of the complex geometries, intricate physics of fluids, and complicated fluid-structure interactions. The way in which the interaction between fluid and solid is described gives the largest opportunity for reducing the computational effort. One possibility for reducing the computational effort of fluid-structure simulations is the use of one-way coupled simulations. In this paper, different problems are investigated with one-way and two-way coupled methods. After an explanation of the solution strategy for both models, a closer look at the differences between these methods will be provided, and it will be shown under what conditions a one-way coupling solution gives plausible results.
The periodically unsteady flow fields in a low specific speed radial diffuser pump have been investigated both numerically and experimentally for the design condition (Qdes) and also one part-load condition (0.5Qdes). Three-dimensional, unsteady Reynolds-averaged Navier–Stokes equations are solved on high-quality structured grids with the shear stress transport turbulence model by using the CFD (computational fluid dynamics) code CFX-10. Furthermore, two-dimensional laser Doppler velocimetry (LDV) measurements are successfully conducted in the interaction region between the impeller and the vaned diffuser, in order to capture the complex flow with abundant measurement data and to validate the CFD results. The analysis of the obtained results has been focused on the behavior of the periodic velocity field and the turbulence field, as well as the associated unsteady phenomena due to the unsteady interaction. In addition, the comparison between CFD and LDV results has also been addressed. The blade orientation effects caused by the impeller rotation are quantitatively examined and detailedly compared with the turbulence effect. This work offers a good data set to develop the comprehension of the impeller-diffuser interaction and how the flow varies with relative impeller position to the diffuser in radial diffuser pumps.
In this paper, the periodically unsteady pressure field caused by rotor-stator interaction has been investigated numerically by computational fluid dynamics (CFD) calculation to evaluate the transient pressure variation in a single-blade pump for multiconditions. Side chamber flow effect is also considered for the simulation to accurately predict the flow in a whole-flow passage. The strength of the pressure fluctuation is analyzed quantitatively by defining the standard deviation of the pressure fluctuation of a revolution period. The analysis of the results shows that higher pressure fluctuation magnitudes can be observed near the blade pressure side and high gradients of fluctuation magnitudes can be obtained at the trailing edge near the pressure side of the blade. An asymmetrical distribution of fluctuation magnitudes in the volute domain can be clearly obtained. On the cylindrical surface around the impeller outlet, although the absolute pressure value is higher for the Q = 11 l/s condition, the magnitude distribution of fluctuations is lower, and a relatively symmetrical fluctuation distribution is obtained for the Q = 22 l/s condition when clearly asymmetrical distributions of fluctuation magnitude can be observed for the design point and for large flow rates. Obvious periodicity can be observed for the pressure fluctuation magnitude distribution on the circumference with different radii in the volute domain, and some subpeaks and subvalleys can be found. The effects of unsteady flow in the side chambers on the entire passage flow cannot be neglected for accurately predicting the inner flow of the pump. The results of unsteady pressure fluctuation magnitude can be used to guide the optimum design of the single-blade pump to decrease the hydrodynamic unbalance and to obtain more stable performance of the pump.
The present paper gives a contribution to a better understanding of the flow at the rim and in the wheel space of gas turbines. Steady state and time-accurate numerical simulations with a commercial Navier-Stokes solver for a 1.5 stage turbine similar to the model treated in the European Research Project ICAS-GT were conducted. In the framework of a numerical analysis, a validation with experimental results of the test rig at the Technical University of Aachen will be given. In preceding numerical investigations of realistic gas turbine rim cavities with a simplified treatment of the hot gas path (modelling of the main flow path without blades and vanes), so called Kelvin-Helmholtz vortices were found in the area of the gap when using appropriate boundary conditions. The present work shows that these flow instabilities also occur in a 1.5 stage gas turbine model with consideration of the blades and vanes. Therefore, several simulations with different sealing air mass flow rates (CW 7000, 20000, 30000) have been conducted. The results show, that for high sealing air mass flow rates Kelvin-Helmholtz Instabilities are developing. These vortices significantly coin the flow at the rim.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.