Colorectal cancer is a multi-step process characterized by a sequence of genetic alterations in cell growth regulatory genes, such as the adenomatous polyposis coli, KRAS, p53 and DCC genes. In the present study mutation analysis was performed with SSCA/direct sequencing of the hot-spot regions in exons 11 and 15 for the BRAF gene and exons 1-2 for the KRAS gene in 130 primary colorectal cancer tumors and correlated with clinico-pathological and mutational data. We also performed mutation analysis of the corresponding conserved regions in the ARAF and RAF-1 genes. Mutations in the BRAF and KRAS genes were found in 11.5 and 40% of the tumors, respectively. One germline exonic and nine germline intronic genetic variants were found in the ARAF and RAF-1 genes. All of the BRAF mutations were located in the kinase domain of the conserved region 3 in exon 15 of the BRAF gene. One novel somatic mutation was also identified in the BRAF gene. The majority of the BRAF mutations were found in colon compared with rectal tumors (P = 0.014). In agreement with others, a statistically significant correlation between BRAF mutations and microsatellite instability could be found. A negative correlation was also evident between mutations in the BRAF and KRAS genes, which supports earlier studies where somatic mutations in these genes are mutually exclusive. Collectively, our results provide support for the idea that activation of the MAP kinase pathway, especially via BRAF and KRAS mutations, is of critical importance for the development of colorectal cancer.
Extended-spectrum beta-lactamases (ESBLs) are often mediated by (bla-)SHV, (bla)TEM and (bla)CTX-M genes in Enterobacteriaceae and other Gram-negative bacteria. Numerous molecular typing methods, including PCR-based assays, have been developed for their identification. To reduce the number of PCR amplifications needed we have developed a multiplex PCR assay which detects and discriminates between (bla-)SHV, (bla)TEM and (bla)CTX-M PCR amplicons of 747, 445 and 593 bp, respectively. This multiplex PCR assay allowed the identification of (bla-)SHV, (bla)TEM and (bla)CTX-M genes in a series of clinical isolates of Enterobacteriaceae with previously characterised ESBL phenotype. The presence of (bla)SHV, (bla)TEM and (bla)CTX-M genes was confirmed by partial DNA sequence analysis. Apparently, the universal well-established CTX-M primer pair used here to reveal plasmid-encoded (bla)CTX-M genes would also amplify the chromosomally located K-1 enzyme gene in all Klebsiella oxytoca strains included in the study.
The rapid identification of the etiological agent of microbial infections can bring about both clinical and financial benefits. Thus, fast and generally applicable classification methods are needed that will enable us to rapidly distinguish pathogenic bacteria from commensals or saprophytic bacteria found in the same habitat. We here show that provisional classification of bacterial isolates can be performed on a large scale based on 16S rRNA sequence comparisons using Pyrosequencing, a recently described real-time DNA sequence analysis technique, and the concept of signature matching. The probes we have developed, together with the new technology, will enable early diagnosis of specific pathogens, which is critical for the rational use of antimicrobial therapy in clinical medicine.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.