Compared to atom probe analysis of metallic materials, the analysis of carbide phases results in an enhanced formation of molecular ions and multiple events. In addition, many multiple events appear to consist of two or more ions originating from adjacent sites in the material. Due to limitations of the ion detectors measurements generally underestimate the carbon concentration. Analyses using laser-pulsed atom probe tomography have been performed on SiC, WC, Ti(C,N) and Ti(2)AlC grains in different materials as well as on large M(23)C(6) precipitates in steel. Using standard evaluation methods, the obtained carbon concentration was 6-24% lower than expected from the known stoichiometry. The results improved remarkably by using only the (13)C isotope, and calculating the concentration of (12)C from the natural isotope abundance. This confirms that the main reason for obtaining a too low carbon concentration is the dead time of the detector, mainly affecting carbon since it is more frequently evaporated as multiple ions. In the case of Ti(C,N) and Ti(2)AlC an additional difficulty arises from the overlap between C(2)(+), C(4)(2+) and Ti(2+) at the mass-to-charge 24 Da.
The effects of increasing the nickel content from 3 to 7 or 9 wt-% were investigated in high strength steel weld metals with 2 wt-% manganese. Nickel additions were beneficial to strength but detrimental to impact toughness. Significant segregation of nickel and manganese to interdendritic regions was observed at the two higher nickel contents. In these weld metals a mainly martensitic microstructure developed at interdendritic regions, whereas bainite was found at dendrite core regions. The microstructural inhomogeneity was due to segregation and the accompanying stabilisation of austenite in solute enriched regions to lower transformation temperatures. With 3 wt-% nickel the microstructure was found to be more homogeneous, with mainly bainite forming. The decrease in impact toughness with increasing nickel content was mainly attributed to the formation of coarse grained coalesced bainite.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.