Abstract-We propose a new approach to reconstruct nondiscrete models from gridded volume samples. As a model, we use quadratic trivariate super splines on a uniform tetrahedral partition. We discuss the smoothness and approximation properties of our model and compare to alternative piecewise polynomial constructions. We observe as a non-standard phenomenon that the derivatives of our splines yield optimal approximation order for smooth data, while the theoretical error of the values is nearly optimal due to the averaging rules. Our approach enables efficient reconstruction and visualization of the data. As the piecewise polynomials are of the lowest possible total degree two, we can efficiently determine exact ray intersections with an iso-surface for ray-casting. Moreover, the optimal approximation properties of the derivatives allow to simply sample the necessary gradients directly from the polynomial pieces of the splines. Our results confirm the efficiency of the quasi-interpolating method and demonstrate high visual quality for rendered isosurfaces.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.