In flow visualization, vortex extraction is a long-standing and unsolved problem. For decades, scientists developed numerous definitions that characterize vortex regions and their corelines in different ways, but none emerged as ultimate solution. One reason is that almost all techniques have a fundamental weakness: they are not invariant under changes of the reference frame, i.e., they are not objective. This has two severe implications: First, the result depends on the movement of the observer, and second, they cannot track vortices that are moving on arbitrary paths, which limits their reliability and usefulness in practice. Objective measures are rare, but recently gained more attention in the literature. Instead of only introducing a new objective measure, we show in this paper how all existing measures that are based on velocity and its derivatives can be made objective. We achieve this by observing the vector field in optimal local reference frames, in which the temporal derivative of the flow vanishes, i.e., reference frames in which the flow appears steady. The central contribution of our paper is to show that these optimal local reference frames can be found by a simple and elegant linear optimization. We prove that in the optimal frame, all local vortex extraction methods that are based on velocity and its derivatives become objective. We demonstrate our approach with objective counterparts to λ 2 , vorticity and Sujudi-Haimes.
Visual exploration of multivariate data typically requires projection onto lower-dimensional representations. The number of possible representations grows rapidly with the number of dimensions, and manual exploration quickly becomes ineffective or even uoJeasible. This paper proposes automatic analysis methods to extract potentially relevant visual structures from a set of candidate visualizations. Based on features, the visualizations are ranked in accordance with a specified user task. The user is provided with a manageable number of potentially useful candidate visualizations, which can be u ed as a starting point for interactive data analysis. This can effectively t:ase the task of finding truly useful visualizations and potcntially speed up the data exploration task. In this paper, we present ranking measures for class-based as well as non class-based Scatterplots and Parallel Coordinates visualizations. The proposed analysis methods are evaluated on different datasets.
a) Iconic representation. (b) Due to the shown separation surfaces, the topological skeleton of the vector field looks visually cluttered. (c) Visualization of the topological skeleton using saddle connectors.Figure 1: Topological representations of the benzene data set with 184 critical points. AbstractOne of the reasons that topological methods have a limited popularity for the visualization of complex 3D flow fields is the fact that such topological structures contain a number of separating stream surfaces. Since these stream surfaces tend to hide each other as well as other topological features, for complex 3D topologies the visualizations become cluttered and hardly interpretable. This paper proposes to use particular stream lines called saddle connectors instead of separating stream surfaces and to depict single surfaces only on user demand. We discuss properties and computational issues of saddle connectors and apply these methods to complex flow data. We show that the use of saddle connectors makes topological skeletons available as a valuable visualization tool even for topologically complex 3D flow data.
Understanding the hemodynamics of blood flow in vascular pathologies such as intracranial aneurysms is essential for both their diagnosis and treatment. Computational fluid dynamics (CFD) simulations of blood flow based on patient-individual data are performed to better understand aneurysm initiation and progression and more recently, for predicting treatment success. In virtual stenting, a flow-diverting mesh tube (stent) is modeled inside the reconstructed vasculature and integrated in the simulation. We focus on steady-state simulation and the resulting complex multiparameter data. The blood flow pattern captured therein is assumed to be related to the success of stenting. It is often visualized by a dense and cluttered set of streamlines.We present a fully automatic approach for reducing visual clutter and exposing characteristic flow structures by clustering streamlines and computing cluster representatives. While individual clustering techniques have been applied before to streamlines in 3D flow fields, we contribute a general quantitative and a domain-specific qualitative evaluation of three state-of-the-art techniques. We show that clustering based on streamline geometry as well as on domain-specific streamline attributes contributes to comparing and evaluating different virtual stenting strategies. With our work, we aim at supporting CFD engineers and interventional neuroradiologists.
For the visualization of dense line fields, the careful selection of lines to be rendered is a vital aspect. In this paper, we present a global line selection approach that is based on an optimization process. Starting with an initial set of lines that covers the domain, all lines are rendered with a varying opacity, which is subject to the minimization of a bounded-variable least-squares problem. The optimization strives to keep a balance between information presentation and occlusion avoidance. This way, we obtain view-dependent opacities of the line segments, allowing a real-time free navigation while minimizing the danger of missing important structures in the visualization. We compare our technique with existing local and greedy approaches and apply it to data sets in flow visualization, medical imaging, physics, and computer graphics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.