Rising complexity in industrial asset and maintenance management due to more volatile business environments and megatrends like Industry 4.0 has led to the need for a new perspective on these management domains. The Lean Smart Maintenance (LSM) philosophy, which focuses on both the efficient (lean) and the learning (smart) organization was introduced during the past few years, and a corresponding maturity model (MM) has been developed to guide organizations on their way to asset and maintenance excellence. This paper discusses use cases, in which the usability and the generic aspect of the LSM MM are validated by using data from three different asset management assessment projects in organizations with different types of production. Research results show that the LSM MM can be used as a basis for management system improvement, independent of production types such as one-of-a-kind industry, mass production and continuous production.
The aim of this paper is to compare the performance of three horizontal infill wells in a mature field, of which one is completed with autonomous inflow control devices (AICDs). The analytic results are based on the comparison of oil production rates; water cut development and water-oil ratio plots of the wells. All the wells in this study are producing from the same homogeneous sandstone reservoir.
Two of the horizontal infill wells are targeting attic oil in an area with low risk of gas production of which one of these wells is completed with slotted liners and the other with AICDs. Both are artificially lifted with high rate electrical submersible pumps (ESPs). The third horizontal well was placed in an area with higher gas saturation, where a completion with casing, cementation and perforation was used. The performance of the horizontal wells is compared against each other.
The use of active geo-steering successfully supported the well placement into the "sweet spot" of the reservoir due to real-time well path adjustments.
It was found that the AICDs choke back a high amount of fluid and keep the water cut at a stable plateau level. This observation underlines the key benefit of using AICDs as when comparing to the other producing wells without AICDs, the water cut is steadily increasing.
Therefore the use of AICDs is a real option for horizontal well completion.
This paper will be useful to those who are in a phase of early well planning, e.g. in a field (re-)development project and have to select the best well concept (e.g. slotted liner vs. AICDs). AICDs have proven their value even in a super-mature oil field by improving production. Further advantages and challenges during operation are discussed in this paper.
With the comprehensive Lean Smart Maintenance philosophy and its associated maturity model, organisations were given a tool to reach asset and maintenance excellence. This paper discusses the approach used to transfer the scientifically based methods and concepts of the Lean Smart Maintenance Maturity Model into an assessment structure to generate a generic tool to collect the complete and correct information necessary to determine an organisation's maturity level. Research results show that a standardised assessment process combined with continuous improvement cycles, a more accurate assessment of the company's maturity is possible. A well-structured MM assessment supports less experienced assessors whereby experienced assessors will not need a full questionnaire but only a well-structured list of items and their maturity levels.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.