We present the Cyclic Zipper Method, a procedure to construct lower bounds for Van der Waerden numbers. Using this method we improved seven lower bounds. For natural numbers $r$, $k$ and $n$ a Van der Waerden certificate $W(r,k,n)$ is a partition of $\{1, \ldots, n\}$ into $r$ subsets, such that none of them contains an arithmetic progression of length $k$ (or larger). Van der Waerden showed that given $r$ and $k$, a smallest $n$ exists - the Van der Waerden number $W(r,k)$ - for which no certificate $W(r,k,n)$ exists. In this paper we investigate Van der Waerden certificates which have certain symmetrical and repetitive properties. Surprisingly, it shows that many Van der Waerden certificates, which must avoid repetitions in terms of arithmetic progressions, reveal strong regularities with respect to several other criteria. The Cyclic Zipper Method exploits these regularities. To illustrate these regularities, two techniques are introduced to visualize certificates.
Abstract. This paper discusses several techniques to make the lookahead architecture for satisfiability (Sat) solvers more competitive. Our contribution consists of reduction of the computational costs to perform look-ahead and a cheap integration of both equivalence reasoning and local learning. Most proposed techniques are illustrated with experimental results of their implementation in our solver march eq.
Abstract. Structural logical formulas sometimes yield a substantial fraction of so called equivalence clauses after translation to CNF. Probably the best known example of this is the parity-family. Large instances of such CNF formulas cannot be solved in reasonable time if no detection of, and extra reasoning with, these clauses is incorporated. That is, in solving these formulas, there is a more or less separate algorithmic device dealing with the equivalence clauses, called equivalence reasoning, and another dealing with the remaining clauses. In this paper we propose a way to align these two reasoning devices by introducing parameters for which we establish optimal values over a variety of existing benchmarks. We obtain a truly convincing speed-up in solving such formulas with respect to the best solving methods existing so far.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.