A cDNA clone containing the entire coding region of rat apolipoprotein D (Apo D) was isolated from a cDNA library of regenerating sciatic nerve by differential hybridization. Only small amounts of Apo D mRNA were detected in noninjured mature nerve. Moderately increased levels of Apo D transcripts were found in transected nerves, which were prevented from regeneration by ligation. In contrast, in regenerating crushed nerve, the steady‐state level of Apo D mRNA transiently increased at least 40‐fold above control levels at the time when axons from the proximal stump grow into the distal nerve segment. Using transverse sections and primary cell cultures from regenerating nerve, Apo D transcripts could be localized by in situ hybridization in endoneurial fibroblasts but not in Schwann cells, macrophages or perineurial and epineurial cells. Apo D protein (Mr 32.8 kd) was secreted and accumulated in the endoneurial extracellular space where it could be detected in lipoprotein fractions by immunoblotting using established antibodies to human Apo D. High level expression of Apo D mRNA seems to be a novel regeneration‐associated molecular event of endoneurial fibroblasts indicating a function for Apo D and fibroblasts in nerve repair.
Two peripheral myelin protein PMP22 transcripts, CD25 and SR13, have been identified by Northern blot and RNA-polymerase chain reaction (PCR) methods in rat. The CD25 and SR13 mRNA species (each approximately 1.8 kb in size) differ significantly in their 5'-untranslated region (5'-UTR) sequences but encode the same protein. While CD25 mRNA is largely confined to the peripheral nervous system, the SR13 transcript is more ubiquitously expressed in rat tissues. Both transcripts are differentially expressed during postnatal sciatic nerve development. While CD25 expression steadily increases from low levels in neonates up to a maximum at postnatal day 14, SR13 mRNA levels are elevated at birth but decrease throughout adulthood. CD25 and SR13 transcripts are expressed at very low constant levels in developing and adult brain. In degenerating and regenerating segments of injured peripheral nerve changes in CD25 mRNA levels clearly resemble the expression pattern of other myelin genes, whereas expression of SR13 is inversely correlated with the time course of Schwann cell proliferation. In cultured rat meningeal fibroblasts SR13 mRNA expression is strictly growth arrest-specific and independent of forskolin. On the other hand, regulation of CD25 mRNA levels in these cells is more complex with respect to interfering effects of serum and forskolin. In cultured Schwann cells neither CD25 nor SR13 expression is growth arrest-specific. However, both transcript levels are consistently enhanced by forskolin under all conditions of cell growth tested. Expression of CD25 (but not SR13) depends on high Schwann cell density. Our results substantiate the hypothesis that PMP22 serves two biological functions, one related to cell growth (SR13) and another to myelination (CD25).
We have isolated a 1.476 bp cDNA (NTII11) representing a transcript that is differntially expressed during sciatic nerve development and regeneration in the rat. Nucleotide sequence comparison indicates partial identity with a recently isolated plasmolipin cDNA. However, our clone extends the published sequence by 234 bp at the 5' end and predicts a protein that contains an additional 25 amino acids at th N-terminus. The open reading frame of th NTII11 transcript encodes a 19.4 kDa protein with four putative transmembrane domains. Northern blot analyses revealed a tissue-specific expression was confirmed by in situ hybridization, and cellular localization of plasmolipin mRNA was demonstrated in Schwann cells of the sciatic nerve and in glial cells of myelinated brain structures. The steady-state levels of plasmolipin mRNA were markedly altered (i) during development of sciatic nerve and brain. (ii) after sciatic nerve injury, and (ii) in cured Schwann cells maintained under different conditions of cell growth and arrest. Our data indicate a function of plasmolipin during myelination in the central as well as in the peripheral nervous system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.