Background
Early distinction between refractory
M. pneumoniae
pneumonia (RMPP) and non-RMPP (NRMPP) is still difficult. The community-acquired respiratory distress syndrome (CARDS) toxin can induce inflammatory and histopathological phenotypes associated with
M. pneumoniae
infection. This study aimed to investigate the clinical significance of CARDS toxin and pro-inflammatory cytokines in children with RMPP and to explore whether CARDS toxin can induce TNF-α expression.
Methods
Levels of CARDS toxin and cytokines in BALF from control and children with MPP were determined by real-time PCR and ELISA, respectively. A receiver-operating characteristic (ROC) analysis was performed to assess the diagnostic values of CARDS toxin, TNF-α, and IL-6 in RMPP. The recombinant CARDS toxin was constructed and prepared at different concentrations for stimulation of RAW264.7 cells. After co-culture with CARDS toxin, cytokines were detected by ELISA and the mRNA levels were measured by real-time PCR. Effects of CARDS toxin and TNF-α on inflammatory cell infiltration and mucus secretion in mouse lungs were also evaluated.
Results
Levels of CARDS toxin, TNF-α and IL-6 in bronchoalveolar lavage fluid (BALF) were significantly higher in RMPP cases compared with NRMPP cases. Furthermore, TNF-α had better diagnostic ability for differentiation of RMPP with AUC of 0.824 and Youden index of 0.692 compared with CARDS toxin and IL-6. Moreover, CARDS toxin was positively correlated with TNF-α level in MPP cases. In vitro assay revealed that CARDS toxin induced RAW264.7 macrophages to secrete TNF-α. Further in vivo assay showed that TNF-α deletion partially abrogated the CARDS toxin-mediated induction of inflammatory cell infiltration and mucus secretion in mouse lungs.
Conclusions
The high co-expression of TNF-α and CARDS toxin in BALF is a good diagnostic biomarker for differentiating children with RMPP and NRMPP.
The current treatments for severe skin injury all involve skin grafting. However, there is a worldwide shortage of donor skin tissue. In this study, we examined the advantages of using human amniotic fluid stem (hAFS) cells in skin wound healing. In vitro, hAFS cells differentiate into keratinocytes (termed hAFS-K). Like keratinocytes, hAFS-K cells express the markers K5, K14, K10 and involucrin; display typical cellular structure, including a tonofibril-rich cytoplasm; and construct a completely pluristratified epithelium in 3D culture. In vivo, in a mouse excisional wound model, GFP-positive hAFS cells participate in wound repair. Co-localization of GFP/K14 and GFP/K10 in the repaired epidermis demonstrated that hAFS cells can differentiate into keratinocytes. Real-time PCR results confirmed that hAFS cells can initiate and promote early-stage repair of skin damage. During wound repair, hAFS cells did not directly secrete repair-related factors, such as bFGF, VEGF, CXCL12, TGF-β1 and KGF, and provided a moderate inflammation reaction with lower expression of IL-1β, IL-6, TNF-α, Cox2 and Mac3. In hAFS cells, the negative co-stimulatory molecule B7H4 regulates low immunogenicity, which can provide a modest inflammatory reaction microenvironment for wound repair. Furthermore, with their uniquely high proliferation rate, hAFS cells offer a promising alternative for epidermal regeneration.
In the past decade, mesenchymal stem cells (MSCs) have been widely used for the treatment of osteoarthritis (OA), and exosomes may play a major role. Here, we acquired a special kind of MSCs from the bone marrow of surgically resected tissue from the hand of a patient with polydactyly. Experiments were focused on the role of polydactyly bone marrow-derived MSCs (pBMSCs) in osteoarthritis. The results showed that the pBMSCs had a greater ability than the BMSCs to differentiate into chondrocytes. Mechanistically, the expression of BMP4 was significantly higher in the pBMSCs than it was in the BMSCs. Furthermore, we showed that the migration and proliferation of chondrocytes were stimulated by exosomes secreted by pBMSC (pBMSC-EXOs). Notably, the downregulation of BMP4 in pBMSCs by siRNA inhibited both the chondrogenic differentiation potential of the MSCs and the function of the chondrocytes. In addition, the injection of pBMSC-EXOs and BMSC-EXOs attenuated OA in an OA mouse model, but the pBMSC-EXOs had a superior therapeutic effect compared with that of the BMSC-EXOs. Taken together, the data indicate that pBMSCs have greater ability to differentiate into chondrocytes and regulate chondrocyte formation through BMP4 signaling. Therefore, pBMSC-EXOs may represent a novel treatment for OA.
BackgroundEffective gastric carcinoma (GC) chemotherapy is subject to many in vitro and in vivo barriers, such as tumor microenvironment and multidrug resistance.Materials and methodsHerein, we developed a hyaluronic acid (HA)-modified silica nanoparticle (HA-SiLN/QD) co-delivering quercetin and doxorubicin (DOX) to enhance the efficacy of GC therapy (HA-SiLN/QD). The HA modification was done to recognize overexpressed CD44 receptors on GC cells and mediate selective tumor targeting. In parallel, quercetin delivery decreased the expression of Wnt16 and P-glycoprotein, thus remodeling the tumor microenvironment and reversed multidrug resistance to facilitate DOX activity.ResultsExperimental results demonstrated that HA-SiLN/QD was nanoscaled particles with preferable stability and sustained release property. In vitro cell experiments on SGC7901/ADR cells showed selective uptake and increased DOX retention as compared to the DOX mono-delivery system (HA-SiLN/D).ConclusionIn vivo anticancer assays on the SGC7901/ADR tumor-bearing mice model also revealed significantly enhanced efficacy of HA-SiLN/QD than mono-delivery systems (HA-SiLN/Q and HA-SiLN/D).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.