Substance P (SP) regulates multiple biological processes through its high-affinity neurokinin-1 receptor (NK-1R). While the SP/NK-1R signaling axis is involved in the pathogenesis of solid cancer, the role of this signaling pathway in hematological malignancy remains unknown. Here, we demonstrate that NK-1R expression is markedly elevated in the white blood cells from acute myeloid leukemia patients and a panel of human leukemia cell lines. Blocking NK-1R induces apoptosis in vitro and in vivo via increase of mitochondrial reactive oxygen species. This oxidative stress was triggered by rapid calcium flux from the endoplasmic reticulum into mitochondria and, consequently, impairment of mitochondrial function, a mechanism underlying the cytotoxicity of NK-1R antagonists. Besides anticancer activity, blocking NK-1R produces a potent antinociceptive effect in myeloid leukemia-induced bone pain by alleviating inflammation and inducing apoptosis. These findings thus raise the exciting possibility that the NK-1R antagonists, drugs currently used in the clinic for preventing chemotherapy-induced nausea and vomiting, may provide a therapeutic option for treating human myeloid leukemia.
Annexin A1 is a Ca
2+
-dependent phospholipid binding protein involved in a variety of pathophysiological processes. Accumulated evidence has indicated that Annexin A1 has important functions in cell proliferation, apoptosis, differentiation, metastasis, and inflammatory response. Moreover, the abnormal expression of Annexin A1 is closely related to the occurrence and development of tumors. In this review article, we focus on the structure and function of Annexin A1 protein, especially the recent evidence of Annexin A1 in the pathophysiological role of inflammatory and cancer. This summary will be very important for further investigation of the pathophysiological role of Annexin A1 and for the development of novel therapeutics of inflammatory and cancer based on targeting Annexin A1 protein.
LF11-322 (PFWRIRIRR-NH2) (PFR peptide), a nine amino acid-residue peptide fragment derived from human lactoferricin, possesses potent cytotoxicity against bacteria. We report here the discovery and characterization of its antitumor activity in leukemia cells. PFR peptide inhibited the proliferation of MEL and HL-60 leukemia cells by inducing cell death in the absence of the classical features of apoptosis, including chromatin condensation, Annexin V staining, Caspase activation and increase of abundance of pro-apoptotic proteins. Instead, necrotic cell death as evidenced by increasing intracellular PI staining and LDH release, inducing membrane disruption and up-regulating intracellular calcium level, was observed following PFR peptide treatment. In addition to necrotic cell death, PFR peptide also induced G0/G1 cell cycle arrest. Moreover, PFR peptide exhibited favorable antitumor activity and tolerability in vivo. These findings thus provide a new clue of antimicrobial peptides as a potential novel therapy for leukemia.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.