Studies on the long-term degradation of organic light-emitting devices (OLEDs) based on tris(8-hydroxyquinoline) aluminum (AlQ3), the most widely used electroluminescent molecule, reveal that injection of holes in AlQ3 is the main cause of device degradation. The transport of holes into AlQ3 caused a decrease in its fluorescence quantum efficiency, thus showing that cationic AlQ3 species are unstable and that their degradation products are fluorescence quenchers. These findings explain the success of different approaches to stabilizing OLEDs, such as doping of the hole transport layer, introducing a buffer layer at the hole-injecting contact, and using mixed emitting layers of hole and electron transporting molecules.
A new electron acceptor building block, 3,6-di(pyridin-2-yl)pyrrolo[3,4-c ]pyrrole-1,4(2H ,5H)-dione (DBPy), is used to construct a donor-acceptor polymer, PDBPyBT. This polymer exhibits a strong self-assembly capability, to form highly crystalline and oriented thin films with a short π-π stacking distance of 0.36 nm. PDBPyBT shows ambipolar charge-transport performance in organic thin-film transistors, reaching a record high electron-mobility value of 6.30 cm(2) V(-1) s(-1).
The intrinsic degradation of tris(8-hydroxyquinoline) aluminum (AlQ3)-based organic light emitting devices, that leads to the long-term decrease in the electroluminescence efficiency of the devices operated under constant current conditions, is studied. The injection of holes in A1Q3 is found to be the main factor responsible for device degradation. OLEDs with dual HTLs in different arrangements are also presented to demonstrate the proposed degradation mechanism. The role of various approaches to increase OLED lifetime, such as, doping the hole transport layer, introducing a buffer layer at the hole-injecting contact, or using a mixed emitting layer of hole and electron transporting molecules, is explained.
Triplet–triplet annihilation (TTA) is studied in a wide range of fluorescent host:guest emitter systems used in organic light‐emitting devices (OLEDs). Strong TTA is observed in host:guest systems in which the dopant has a limited charge‐trapping capability. On the other hand, systems in which the dopant can efficiently trap charges show insignificant TTA, an effect that is due, in part, to the efficient quenching of triplet excitons by the trapped charges. Fluorescent host:guest systems with the strongest TTA are found to give the highest OLED electroluminescence efficiency, a phenomenon attributed to the role of TTA in converting triplet excitons into additional singlet excitons, thus appreciably contributing to the light output of OLEDs. The results shed light on and give direct evidence for the phenomena behind the recently reported very high efficiencies attainable in fluorescent host:guest OLEDs with quantum efficiencies exceeding the classical 25% theoretical limit.
We report electroluminescence degradation studies of tris (8-hydroxyquinoline) aluminum (Alq3) organic light-emitting devices (OLEDs) under ambient conditions. Alq3 films and organic bilayer anode/naphthyl-substituted benzidine derivative/Alq3/cathode devices are studied via electroluminescence, photoluminescence, polarization microscopy and atomic force microscopy, and via microscopic infrared spectroscopy. Results reveal that humidity induces the formation of crystalline Alq3 structures in originally amorphous films. The same phenomenon is found to occur in OLEDs and causes cathode delamination at the Alq3/cathode interface that results in the formation of black (nonemissive) spots in the devices.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.