Detection of a broad variety of molecular signatures in all CHD specimens suggests that diverse bacterial colonization may be more important than a single pathogen. Our observation does not allow us to conclude that bacteria are the causative agent in the etiopathogenesis of CHD. However, bacterial agents could have secondarily colonized atheromatous lesions and could act as an additional factor accelerating disease progression.
The adhesion of K21a, K26, K36, and K50 capsulated Klebsiella strains to ileocecal (HCT-8) and bladder (T24) epithelial cell lines was significantly lower than that of their corresponding spontaneous noncapsulated variants K21a/3, K26/1, K36/3, and K50/3, respectively. Internalization of the bacteria by both epithelial cell lines was also significantly reduced. Similarly, a capsule-switched derivative, K2(K36), that exhibited a morphologically larger K36 capsule and formed more capsular material invaded the ileocecal epithelial cell line poorly compared to the corresponding K2 parent strain. None of the capsulated strains exhibited significant mannose-sensitive type 1 fimbriae, whereas two of the noncapsulated variants K21a/3 and K50/3 exhibited potent mannose-sensitive hemagglutinating activity. Although hemagglutinating activity that could be attributed to mannose-resistant Klebsiella type 3 fimbriae was weak in all strains, in several cases the encapsulated parent strains exhibited lower titers than their corresponding noncapsulated variants. Although the level of adhesion to the ileocecal cells is not different from adhesion to bladder cells, bacterial internalization by bladder cells was significantly lower than internalization by ileocecal cells, suggesting that bladder cells lack components required for the internalization of Klebsiella.Klebsiella pneumoniae is an opportunistic pathogen involved in outbreaks of nosocomial infections, such as bacteremia and sepsis, mainly in immunocompromised individuals (36). Due to the emergence of multidrug resistance among Klebsiella strains, the search for new approaches for the prevention or treatment of Klebsiella infections is now under intensive investigation (34). To be successful, these efforts will require a better understanding of the infectious process.Multiple Klebsiella components (e.g., fimbriae, siderophores, O antigens, and capsular antigens) have been considered to be potential virulence factors (34). Of these factors, capsular antigens are probably considered the major determinants of pathogenicity (4,9,17,21). As a consequence, new therapeutic approaches have been targeted against the capsule. A polysaccharide-based vaccine has been tested (5). Based on the structural variability of its capsular polysaccharides (CPS), Klebsiella has been classified into 77 serotypes (27), which differ markedly in pathogenicity potential and epidemiological relevance (3,28,29,35). Epidemiological findings showed that over 70% of all cases of Klebsiella bacteremia were caused by only 25 of the 77 different serotypes (6).
Pulmonary surfactant protein D (SP-D) is a collagenous C-type lectin (collectin) that is secreted into
SummaryHost immune response influences the clinical outcome of Helicobacter pylori infection leading to ulcer disease, gastric carcinoma and mucosa-associated lymphoid tissue (MALT) lymphoma. A genetic risk profile for gastric cancer has been identified, but genetic susceptibility to develop MALT lymphoma is still unclear. We investigated the role of NOD1 and NOD2 as intracellular recognition molecules for pathogen-associated molecules in H. pylori infection in vitro and analysed the influence of single nucleotide polymorphisms on susceptibility to ulcer disease and MALT lymphoma. Expression of NOD1 and NOD2 significantly sensitized HEK293 cells to H. pylori -induced NF-k B activation in a cag pathogenicity island ( cag PAI)-dependent manner. In cells carrying the Crohn-associated NOD2 variant R702W the NF-k B response was significantly diminished. NOD1/ NOD2 expression levels were induced in the gastric epithelium in H. pylori -positive patients. No mutations were found to be associated with gastritis or gastric ulcer development. However, the R702W mutation in the NOD2/CARD15 gene was significantly associated with gastric lymphoma. Carrier of the rare allele T had a more than doubled risk to develop lymphoma than controls [odds ratio (OR): 2.4, 95% confidence interval (CI): 1.2-4.6; P < 0.044]. H. pylori -induced upregulation of NOD1 and NOD2 in vivo may play a critical role in the recognition of this common pathogen. A missense mutation in the leucine-rich region of CARD15 is associated with gastric lymphoma.
Bad breath is a common phenomenon, usually the result of bacterial metabolism in the oral cavity. It is generally accepted that Gram-negative bacteria are responsible for this problem, largely through degradation of proteinaceous substances. In initial experiments, screening of malodorous isolates following outgrowth of samples obtained from saliva, periodontal pockets, and the tongue dorsum yielded enterobacterial isolates. Clinical studies were conducted to examine the prevalence of such bacteria in four different populations: orthodontic patients, malodor clinic patients, complete-denture wearers, and a healthy young population. The prevalence of Enterobacteriaceae in the oral cavities of the denture-wearing population was very high (48.0%) as compared with the other groups: 27.1% in the malodor clinic patients, 16.4% in the normal population, and 13% among orthodontic patients. Isolates of Klebsiella and Enterobacter emitted foul odors in vitro which resembled bad breath, with concomitant production of volatile sulfides and cadaverine, both compounds related to bad breath. When incubated on a sterile denture, enterobacterial isolates produced typical denture foul odor. Isolates exhibited cell-surface hydrophobic properties when tested for adhesion to acryl and aggregation with ammonium sulphate. The results, taken together, suggest that Klebsiella and related Enterobacteriaceae may play a role in denture malodor.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.