The high voltage losses ($${V}_{{loss}}$$
V
l
o
s
s
), originating from inevitable electron-phonon coupling in organic materials, limit the power conversion efficiency of organic solar cells to lower values than that of inorganic or perovskite solar cells. In this work, we demonstrate that this $${V}_{{loss}}$$
V
l
o
s
s
can in fact be suppressed by controlling the spacing between the donor (D) and the acceptor (A) materials (DA spacing). We show that in typical organic solar cells, the DA spacing is generally too small, being the origin of the too-fast non-radiative decay of charge carriers ($${k}_{{nr}}$$
k
n
r
), and it can be increased by engineering the non-conjugated groups, i.e., alkyl chain spacers in single component DA systems and side chains in high-efficiency bulk-heterojunction systems. Increasing DA spacing allows us to realize significantly reduced $${k}_{{nr}}$$
k
n
r
and improved device voltage. This points out a new research direction for breaking the performance bottleneck of organic solar cells.
To realize the high efficiency organic photovoltaics (OPVs), two critical requirements have to be fulfilled: (1) increasing the photon energy absorption range of the active layer, and (2) improving charge separation and transport in the active layer. This study reports the utilization of THC8, a novel fluorescence-based polymer containing propeller-shaped di-triarylamine and fluorene moieties in the active layer consisting of poly-3-hexylthiophene and [6,6]-phenyl-C61-butyric acid methyl ester to form a ternary bulk heterojunction. The results showed that the high absorbance and strong fluorescence of THC8 at 420 and 510 nm, respectively, broadened the spectral absorption of the OPV, possibly through Förster resonance energy transfer. In addition, the morphology of the device active layer was improved with the addition of a suitable amount of THC8. Consequently, the charge transport property of the active layer was improved. The best power conversion efficiency (PCE) of the device with THC8 was 3.88%, a 25% increase compared to the PCE of a pristine OPV.
A new rapid switching near-IR electrochromic conjugated propeller-shape polymer (PBTPAFL) with lower oxidation potential containing a di-triarylamine group was synthesized via Suzuki coupling approach. The observed UVvis-NIR absorption changes in the PBTPAFL film at various potentials are fully reversible and associated with strong color changes from the original light green to dark green and then to a Prussian blue. Excellent continuous cyclic stability of the electrochromic characteristics with a rapid color switching time 2.58 s and bleaching time 1.76 s was found as well. Compared with P1 and P2, the introduction of more electrondonating propyl phenyl group in the para position of PBTPAFL lowered the oxidative potential and prevented coupling reaction during the electrochromic procedure. The high molecular weight conjugated polymer having high thermal stability with T d10 more than 450 C has excellent solubility in common organic solvents such as NMP, THF, chloroform, toluene, xylene, and benzene at room temperature (25 C) due to the propeller-shape structure and long alkyl chain on fluorene. Herein, from the combination of the experimental and computational study, we proposed a mechanism on the basis of the molecular orbital theory to explain the electrochromic oxidation behavior. V C 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: [3913][3914][3915][3916][3917][3918][3919][3920][3921][3922][3923] 2010
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.