This study uses simulations and experiments to explain why and how the placement of tyrosine residues in elastin-peptide containing conjugates impacts their transition temperature.
Despite the great promise of antibiotic therapy in wound infections, antibiotic resistance stemming from frequent dosing diminishes drug efficacy and contributes to recurrent infection. To identify improvements in antibiotic therapies, new antibiotic delivery systems that maximize pharmacological activity and minimize side effects are needed. In this study, we developed elastin-like peptide and collagen-like peptide nanovesicles (ECnVs) tethered to collagencontaining matrices to control vancomycin delivery and provide extended antibacterial effects against methicillin-resistant Staphylococcus aureus (MRSA). We observed that ECnVs showed enhanced entrapment efficacy of vancomycin by 3-fold as compared to liposome formulations. Additionally, ECnVs enabled the controlled release of vancomycin at a constant rate with zero-order kinetics, whereas liposomes exhibited first-order release kinetics. Moreover, ECnVs could be retained on both collagen-fibrin (co-gel) matrices and collagen-only matrices, with differential retention on the two biomaterials resulting in different local concentrations of released vancomycin. Overall, the biphasic release profiles of vancomycin from ECnVs/co-gel and ECnVs/ collagen more effectively inhibited the growth of MRSA for 18 and 24 h, respectively, even after repeated bacterial inoculation, as compared to matrices containing free vancomycin, which just delayed the growth of MRSA. Thus, this newly developed antibiotic delivery system exhibited distinct advantages for controlled vancomycin delivery and prolonged antibacterial activity relevant to the treatment of wound infections.
We reported a classical two-tile system of DAE-O (doublecrossover, antiparallel, and even half-turns tiles with odd half-turns connection) to construct regular single crystalline 2D (two dimensional) DNA lattices, using pre-circularised oligonucleotides of 42-, 64-, and 84-nt (nucleotides) as the central looped strands in DAE tiles respectively. DAE tiles with 42- and 64-nt as central strands, either in circular form or in linear form, grew regular single crystalline lattices well. However DAE tiles including a circular 84-nt as the central strand grew single crystalline lattices, those including a linear 84-nt as the central strand grew polycrystalline 2D lattices. A subtle difference in the lateral rigidity of DAE tiles with regard to the duplex axis was suggested to be the cause of the morphological difference.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.