Late-time dominance of entanglement islands plays a critical role in addressing the information paradox for black holes in AdS coupled to an asymptotic non-gravitational bath. A natural question is how this observation can be extended to gravitational systems. To gain insight into this question, we explore how this story is modified within the context of Karch-Randall braneworlds when we allow the asymptotic bath to couple to dynamical gravity. We find that because of the inability to separate degrees of freedom by spatial location when defining the radiation region, the entanglement entropy of radiation emitted into the bath is a time-independent constant, consistent with recent work on black hole information in asymptotically flat space. If we instead consider an entanglement entropy between two sectors of a specific division of the Hilbert space, we then find non-trivial time-dependence, with the Page time a monotonically decreasing function of the brane angle---provided both branes are below a particular angle. However, the properties of the entropy depend discontinuously on this angle, which is the first example of such discontinuous behavior for an AdS brane in AdS space.
We comment on the role of the graviton mass in recent calculations of the Page curve using holographic ideas. All reliable calculations of the Page curve in more than 2+1 spacetime dimensions have been performed in systems with massive gravitons. A crucial ingredient in these calculations is the formation of islands, regions that contribute to the entropy of degrees of freedom located elsewhere. While most often simply ignored, it is indeed true that mass of the graviton does not appear to significantly affect the calculations that appeared in the literature. We use the freedom to change the graviton mass to give an extremely simple model of analytically tractable island formation in general dimensions. We do however note that if one attempts to take the limit of zero graviton mass, any contribution from the islands disappears. This raises the question to what extent entanglement islands can play a role in standard massless gravity.
We study the AdS/BCFT duality between two-dimensional conformal field theories with two boundaries and three-dimensional anti-de Sitter space with two Karch-Randall branes. We compute the entanglement entropy of a bipartition of the BCFT, on both the gravity side and the field theory side. At finite temperature this entanglement entropy characterizes the communication between two braneworld black holes, coupled to each other through a common bath. We find a Page curve consistent with unitarity. The gravitational result, computed using double-holographically realized quantum extremal surfaces, matches the conformal field theory calculation.At zero temperature, we obtain an interesting extension of the AdS3/BCFT2 correspondence. For a central charge c, we find a gap $$ \left(\frac{c}{16},\frac{c}{12}\right) $$ c 16 c 12 in the spectrum of the scaling dimension ∆bcc of the boundary condition changing operator (which interpolates mismatched boundary conditions on the two boundaries of the BCFT). Depending on the value of ∆bcc, the gravitational dual is either a defect global AdS3 geometry or a single sided black hole, and in both cases there are two Karch-Randall branes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.