The enhanced efficiency of the crystalline silicon (c-Si) solar cell with nanopillar arrays (NPAs) was demonstrated by deployment of CdS quantum dots (QDs). The NPAs was fabricated by the colloidal lithography and reactive-ion etching techniques. Under a simulated one-sun condition, the device with CdS QDs shows a 33% improvement of power conversion efficiency, compared with the one without QDs. For further investigation, the excitation spectrum of photoluminescence (PL), absorbance spectrum, current-voltage (I-V) characteristics, reflectance and external quantum efficiency of the device was measured and analyzed. It is noteworthy that the enhancement of efficiency could be attributed to the photon down-conversion, the antireflection, and the improved electrical property.
Light-management is critical to thin film solar cells due to their usually limited optical absorption in the active layer. Conventional approaches involve employing separate techniques for anti-reflection and light trapping. Here, we demonstrate an embedded biomimetic nanostructure (EBN) that achieves both effects for hydrogenated amorphous silicon (a-Si:H) solar cells. The fabrication of EBNs is accomplished by patterning an index-matching silicon-nitride layer deposited on a glass substrate using polystyrene nanospheres lithography, followed by reactive ion etching. The profile of EBN is then reproduced layer by layer during the deposition of a-Si:H cells. We show that a solar cell with an optimized EBN exhibits a broadband enhanced external quantum efficiency due to both anti-reflection and light-trapping, with respect to an industrial standard cell using an Asahi U glass substrate which is mostly optimized for light trapping. Overall, the cell with an optimized EBN achieves a large short-circuit current density of 17.74 mA/cm(2), corresponding to a 37.63% enhancement over a flat control cell. The power conversion efficiency is also increased from 5.36% to 8.32%. Moreover, the light management enabled by the EBN remains efficient over a wide range of incident angles up to 60°, which is particularly desirable for real environments with diffused sun light. The novel patterning method is not restricted to a-Si:H solar cells, but is also widely applicable to other thin film materials.
A single-junction InGaP solar cell with polystyrene (PS) nanospheres on the surface has been developed. The self-assembly of PS nanospheres is one of the simplest and the fastest methods with which to build a 2-D closely packed periodic structure. Due to the scattering of the PS nanospheres, the light path length can be increased when compared to the InGaP solar cells without PS nanospheres on the top. An increase short-circuit current from 8.93 to 10.31 mA is improved when a single-junction InGaP solar cell is coated with PS nanospheres. The conversion efficiency measured can also be improved from 8.79% to 9.71%. The single-junction InGaP solar cell with PS nanospheres was achieved.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.