This paper focused on the seismic performance of buckling-restrained braced concrete frame. Two different systems including the single-level yielding buckling-restrained braced concrete frame (SYBRBCF) and the double-level yielding bucklingrestrained braced concrete frame (DYBRBCF) were designed for comparison. Compared with the single-level yielding buckling-restrained braces which are similar to many existing types of buckling-restrained braces, the double-level yielding buckling-restrained braces (DYBRBs) have two different energy absorption mechanisms that are expected to provide energy dissipations under the frequent earthquakes and rare earthquakes. To comparatively investigate the seismic performances of the two systems, cyclic tests were performed on one DYBRBCF specimen and another SYBRBCF specimen. The seismic response including the hysteretic curves, backbone curves, ductility coefficients, equivalent damping ratios, strengths, and stiffness degradations of the two experimental specimens was compared and analyzed. The test results indicate that the properly designed SYBRBCF and DYBRBCF can both exhibit the full hysteretic curves, meet the strong-column-weak-beam design requirement, and achieve the expected seismic performance. However, it was found that the ductility coefficient and energy dissipation capacity of the DYBRBCF were 72.2% and 23.4% higher than those of the SYBRBCF. The present study also provided useful design recommendations, which were beneficial to promote the application of DYBRBs.
s. In this paper, we discuss the design and calculation methods of Circular-shaped Corrugated Steel Culvert Pipe (CCSCP) used in highway construction. With many advantages such as lightweight, environment friendly, cost-effective, rapid construction, etc., Corrugated Steel Culvert Pipe (CSCP) have been widely used in highway construction acting as the alternative of RC culvert in China in recent years. It will not crack under impact loads or vibrations due to the inherent strength of steel and the flexibility of the corrugated pipe section. The high ring compression of the pipe absorbs and transfers the load to the surrounding soil around the entire circumference. In this paper CCSCP is a kind of culvert which is fabricated to a circular shape by several pieces of corrugated steel plates jointed by high strength bolts. In this paper, a serial test is conducted on site in process of the fabricating of the CCSCP used in the construction of Shanghai North Outer Ring Line Highway in China. In addition, 3D FEM analysis is performed with the intent of contrasting with the result of the test. Some design methods are proposed in this paper, and they will be useful guidelines for safe design of CCSCP.
Fiber-optic surface plasmon resonance (FOSPR) sensing technology has become an appealing candidate in biochemical sensing applications due to its distinguished capability of remote and point-of-care detection. However, FOSPR sensing devices with a flat plasmonic film on the optical fiber tip are seldom proposed with most reports concentrating on fiber sidewalls. In this paper, we propose and experimentally demonstrate the plasmonic coupled structure of a gold (Au) nanodisk array and a thin film integrated into the fiber facet, enabling the excitation of the plasmon mode on the planar gold film by strong coupling. This plasmonic fiber sensor is fabricated by the ultraviolet (UV) curing adhesive transferring technology from a planar substrate to a fiber facet. The experimental results demonstrate that the fabricated sensing probe has a bulk refractive index sensitivity of 137.28 nm/RIU and exhibits moderate surface sensitivity by measuring the spatial localization of its excited plasmon mode on Au film by layer-by-layer self-assembly technology. Furthermore, the fabricated plasmonic sensing probe enables the detection of bovine serum albumin (BSA) biomolecule with a detection limit of 19.35 μM. The demonstrated fiber probe here provides a potential strategy to integrate plasmonic nanostructure on the fiber facet with excellent sensing performance, which has a unique application prospect in the detection of remote, in situ, and in vivo invasion.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.