Tissue equivalent proportional counter (TEPC) is used to measure the micro-dose spectrum of ionizing radiation. Through changing tissue-equivalent gas pressure, TEPC can simulate the case of radiation energy deposition in different sizes of human cells. Various dosimetric quantities can be obtained such as absorbed dose, radiation quality factor and micro-dose equivalent. Because TEPC simulated cell size is less than the range of ionizing radiation particles, TEPC can be used as linear energy transfer spectroscopy, which can identify different linear energy transfer particles in a mixed radiation field and play an important role in mixed neutron–photon radiation field monitoring and protection. A tissue equivalent proportional counter is designed and manufactured in this paper. Through the built of micro-dose detector signal testing platform, and the realization of measurement of micro-dose detector signal debugging and important parameters (stability, energy resolution, etc.) by [Formula: see text] source method, micro-dose energy spectrum analysis and experimental measurements of Cf-252 source were ultimately achieved. Results show that the detector has good sealing performance and stability, with 12 h stability better than 2.7%. Based on all the above spectra, micro-dosing spectrum of Cf-252 source was experimentally obtained.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.