Graphite intercalation compounds (GICs) have attracted tremendous attention due to their exceptional properties that can be finely tuned by controlling the intercalation species and concentrations. Here, we report for the first time that potassium (K) ions can electrochemically intercalate into graphitic materials, such as graphite and reduced graphene oxide (RGO) at ambient temperature and pressure. Our experiments reveal that graphite can deliver a reversible capacity of 207 mAh/g. Combining experiments with ab initio calculations, we propose a three-step staging process during the intercalation of K ions into graphite: C → KC24 (Stage III) → KC16 (Stage II) → KC8 (Stage I). Moreover, we find that K ions can also intercalate into RGO film with even higher reversible capacity (222 mAh/g). We also show that K ions intercalation can effectively increase the optical transparence of the RGO film from 29.0% to 84.3%. First-principles calculations suggest that this trend is attributed to a decreased absorbance produced by K ions intercalation. Our results open opportunities for novel nonaqueous K-ion based electrochemical battery technologies and optical applications.
Although various device structures based on GaSb nanowires have been realized, further performance enhancement suffers from uncontrolled radial growth during the nanowire synthesis, resulting in non-uniform and tapered nanowires with diameters larger than few tens of nanometres. Here we report the use of sulfur surfactant in chemical vapour deposition to achieve very thin and uniform GaSb nanowires with diameters down to 20 nm. In contrast to surfactant effects typically employed in the liquid phase and thin-film technologies, the sulfur atoms contribute to form stable S-Sb bonds on the as-grown nanowire surface, effectively stabilizing sidewalls and minimizing unintentional radial nanowire growth. When configured into transistors, these devices exhibit impressive electrical properties with the peak hole mobility of B200 cm 2 V À 1 s À 1 , better than any mobility value reported for a GaSb nanowire device to date. These factors indicate the effectiveness of this surfactant-assisted growth for high-performance small-diameter GaSb nanowires.
This work reports a green and facile approach to the synthesis of graphene nanosheets through the zinc reduction of a graphene oxide precursor in alkaline media. Compared to the chemical reduction of GO by using hydrazine or its derivations, the present route is operationally easy and environmentally friendly. Moreover, the reduction degree of GO in the present condition is much higher than that in either Zn or alkaline solutions alone, indicating a cooperative mechanism, and the as-prepared graphene exhibits a good stability in solution. This simple method shows promising applications in the bulk-quantity production of graphene and graphene-based materials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.