Graphene-based metal oxides generally show outstanding electrochemical performance due to the superior properties of graphene. However, the aggregation of active metal oxide nanoparticles on the graphene surface may result in a capacity fading and poor cycle performance. Here, a mesostructured graphene-based SnO 2 composite is prepared through in situ growth of SnO 2 particles on the graphene surface using cetyltrimethylammonium bromide as the structure-directing agent. This novel mesoporous composite inherits the advantages of graphene nanosheets and mesoporous materials and exhibits higher reversible capacity, better cycle performance, and better rate capability compared to pure mesoporous SnO 2 and graphene-based nonporous SnO 2 . It is concluded that the synergetic effect between graphene and mesostructure benefi ts the improvement of the electrochemical properties of the hybrid composites. This facile method may offer an attractive alternative approach for preparation of the graphene-based mesoporous composites as highperformance electrodes for lithium-ion batteries.
Exceptionally long C60 nanowires, with a length to width aspect ratio as large as 3000, are grown from a 1,2,4-trimethylbenzene solution of C60. They have been formed to possess a highly unusual morphology, with each nanowire being composed of two nanobelts joined along the growth direction to give a V-shaped cross section. The crystal structure of these nanowires is found to be orthorhombic, with the unit cell dimensions of a = 10.2 A, b = 20.5 A, and c = 25.6 A. Structural and compositional analyses enable us to explain the observed geometry with an anisotropic molecular packing mechanism that has not been observed previously in C60 crystal studies. The nanowires have been observed to be able to transform into carbon nanofibers following high-temperature treatment, but the original V-shaped morphology can be kept unchanged in the transition. A model for the nanowire morphology based upon the solvent-C60 interactions and preferential growth directions is proposed, and potentially it could be extended for use to grow different types of fullerene nanowires.
This work reports a green and facile approach to the synthesis of graphene nanosheets through the zinc reduction of a graphene oxide precursor in alkaline media. Compared to the chemical reduction of GO by using hydrazine or its derivations, the present route is operationally easy and environmentally friendly. Moreover, the reduction degree of GO in the present condition is much higher than that in either Zn or alkaline solutions alone, indicating a cooperative mechanism, and the as-prepared graphene exhibits a good stability in solution. This simple method shows promising applications in the bulk-quantity production of graphene and graphene-based materials.
As advanced electrodes for direct alcohol fuel cells, graphene-Pd and graphene-Pt composites with a trace of SnO(2) have been successfully synthesized by a modified electroless plating technique. The surface of graphene oxide is first sensitized by Sn(2+) ions, and subsequently, Pd or Pt nanoparticles are deposited on the surface of graphene oxide. Finally, graphene oxide was reduced to graphene by further adding NaBH(4). Compared to other carbon-(e.g., Vulcan XC-72R) supported Pd and Pt, the resultant graphene-Pd and Pt composites exhibit better electrocatalytic activity and long-term stability toward alcohol electrooxidation. Additionally, a trace amount of SnO(2) formed around active catalysts may also be beneficial to the enhancement of electrochemical activity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.