Dynamic collision avoidance between multiple vessels is a task full of challenges for unmanned surface vehicle (USV) movement, which has high requirements on real-time performance and safety. The difficulty of multi-obstacle collision avoidance is that it is hard to formulate the optimal obstacle avoidance strategy when encountering more than one obstacle threat at the same time; a good strategy to avoid one obstacle sometimes leads to threats from other obstacles. This paper presents a dynamic collision avoidance algorithm for USVs based on rolling obstacle classification and fuzzy rules. Firstly, potential collision probabilities between a USV and obstacles are calculated based on the time to the closest point of approach (TCPA). All obstacles are given different priorities based on potential collision probability, and the most urgent and secondary urgent ones will then be dynamically determined. Based on the velocity obstacle algorithm, four possible actions are defined to determine the basic domain in the collision avoidance strategy. After that, the Safety of Avoidance Strategy and Feasibility of Strategy Adjustment are calculated to determine the additional domain based on fuzzy rules. Fuzzy rules are used here to comprehensively consider the situation composed of multiple motion obstacles and the USV. Within the limited range of the basic domain and the additional domain, the optimal collision avoidance parameters of the USV can be calculated by the particle swarm optimization (PSO) algorithm. The PSO algorithm utilizes both the characteristic of pursuance for the population optimal and the characteristic of exploration for the individual optimal to avoid falling into the local optimal solution. Finally, numerical simulations are performed to certify the validity of the proposed method in complex traffic scenarios. The results illustrated that the proposed method could provide efficient collision avoidance actions.
A hybrid computational intelligent approach which combines wavelet fuzzy neural network (WFNN) with switching particle swarm optimization (SPSO) algorithm is proposed to control the nonlinearity, wide variation in loads, time variation, and uncertain disturbance of the high-power AC servo system. The WFNN method integrated wavelet transforms with fuzzy rules and is proposed to achieve precise positioning control of the AC servo system. As the WFNN controller, the back-propagation method is used for the online learning algorithm. Moreover, the SPSO is proposed to adapt the learning rates of the WFNN online, where the velocity updating equation is according to a Markov chain, which makes it easy to jump the local minimum, and acceleration coefficients are dependent on mode switching. Furthermore, the stability of the closed loop system is guaranteed by using the Lyapunov method. The results of the simulation and the prototype test prove that the proposed approach can improve the steady-state performance and possess strong robustness to both parameter perturbation and load disturbance.
Abstract. With the rapid development of Internet, image information is growing. It requires a lot of image storage and transmission. In order to reduce the storage and get better image quality, image compression algorithm is studied. The paper proposes a new image compression algorithm that combines principal component analysis (PCA) and Contourlet Transform (CT). Because PCA has good image quality, but the compression ratio is low, and CT compression algorithm has high compression ratio and good PNSR value. The image is decomposed by PCA. The image data is divided into blocks, and each block is used as a sample vector, then select covariance matrix of k larger eigenvalues corresponding eigenvector to realize image compression. Then the image is compressed again using CT compression algorithm. Compared with the results of JEPG2000 and CT compression algorithm, the results show that the proposed algorithm has better performance than JEPG2000 and CT compression algorithm. In the same compression ratio, PNSR value of proposed algorithm is about 3dB higher than that of JEPG2000, and 2dB higher than that of CT compression algorithm.
In the whole world, the economic loss caused by hull corrosion is enormous. Ship painting has become an important part of ship manufacturing process because it can effectively alleviate the corrosion of ship. The manual painting has disadvantages both in the quality and the efficiency. However, the research of automatic sprayers for a ship hull is not widely used because of the complex environment in the shipyard dock and the huge differences in both size and shape of ships to be repaired. Therefore, this paper proposed a new method: according to the ship size and blocks distribution in the blocks' layout of ship yards, the grid method was used to generate the map model; to solve the problems of high rerouting rate, low coverage and large consumption of calculation in the global path planning, a regional division method was proposed to divide the whole area; to shorten the dock occupancy time, a path planning algorithm based on multi robots heuristic cooperation was proposed. Simulation results and experimental data show that the full coverage path planning algorithm proposed in this paper has satisfactory adaptability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.