Background Renal ischemia-reperfusion (RIR) injury, commonly caused by major surgery and shock, leads to acute kidney injury, and is associated with high morbidity and mortality. Cold-inducible RNA-binding protein (CIRP), a cold shock protein, has been recently identified as a damage-associated molecular pattern (DAMP). We hypothesized that CIRP exacerbates severity of injury in RIR. Methods Renal ischemia was induced in 8-week-old male C57BL/6 wild-type (WT) mice and Cirp−/− mice via bilateral clamping of renal pedicles for 30 min, followed by reperfusion for 5 h or 24 h and harvest of blood and renal tissue for analysis. Anti-CIRP antibody or non-immunized IgG was injected intravenously (10 mg/kg body weight) at time of reperfusion. Results After RIR, Cirp−/− mice demonstrated a reduction of BUN and creatinine of 53% and 60%, respectively, compared to WT mice. Serum IL-6 levels were significantly reduced 70% in Cirp−/− mice compared to WT mice after RIR. Levels of nitrotyrosine, an oxidatively-modified protein marker, and cyclooxygenase-2, an inflammatory mediator, were also significantly decreased in the kidneys of the Cirp−/− mice compared to WT mice after RIR. Renal caspase-3 activity was decreased in Cirp−/− mice compared to WT mice after RIR, which corresponded to the reduction of apoptotic cells determined by TUNEL assay. Injection of neutralizing anti-CIRP antibody into WT mice led to an 82% reduction in BUN compared to the vehicle after RIR. Conclusions Deficiency of CIRP results in less renal injury after RIR by attenuating inflammation and oxidative stress. Furthermore, blockade of CIRP shows a protective effect, indicating CIRP as a target in the treatment of RIR.
Sepsis is a major healthcare concern, especially in the elderly population. The use of an animal model closely resembling clinical conditions in this population may provide a better prediction in translating bench studies to the bedside. Ghrelin inhibits sympathetic nerve activity and inflammation in young septic animals; however, aged animals become hyporesponsive to ghrelin. In this study, we evaluated the efficacy of combined human ghrelin and growth hormone (GH) for sepsis treatment in the elderly utilizing a clinically relevant animal model of sepsis. Male Fischer 344 rats 22 to 24 months old were subjected to cecal ligation and puncture (CLP). Human ghrelin plus GH or vehicle (normal saline) was administered subcutaneously at 5 h after CLP. At 20 h after CLP, blood and tissue samples were collected for various analyses. Combined treatment attenuated serum levels of lactate, lactate dehydrogenase, creatinine, blood urea nitrogen, interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) in aged septic rats. The integrity of the microscopic structure in the lungs, liver and kidneys was well preserved after treatment. Expression of IL-6, TNF-α, macrophage inflammatory protein-2 and keratinocyte-derived chemokine as well as myeloperoxidase activity and caspase-3 activation were significantly reduced in the lungs and liver of treated rats. Moreover, treated rats showed an improvement in cardiovascular function and increased expression of ghrelin receptor and c-fos in the brainstem. Finally, the 10-d survival of aged septic rats was increased from 29% to 64% after combined treatment and was associated with less body weight loss. Our findings warrant the development of combined human ghrelin and GH for sepsis treatment in the geriatric population.
Chronic or non-healing wounds are a major concern in clinical practice and these wounds are mostly associated with diabetes, and venous and pressure ulcers. Wound healing is a complex process involving overlapping phases and the primary phase in this complex cascade is the inflammatory state. While inflammation is necessary for wound healing, a prolonged inflammatory phase leads to impaired healing. Cold-inducible RNA-binding protein (CIRP) belongs to a family of cold-shock proteins that are expressed in high levels under stress conditions. Recently, we demonstrated that a deficiency in CIRP led to decreased inflammation and mortality in an experimental model of hemorrhagic shock. Thus, we hypothesized that a deficiency in CIRP would accelerate the inflammatory phase and lead to an improvement in cutaneous wound healing. In this study, to examine this hypothesis, a full-thickness wound was created on the dorsum of wild-type (WT) and CIRP-/- mice. The wound size was measured every other day for 14 days. The wound area was significantly decreased in the CIRP-/- mice by day 9 and continued to decrease until day 14 compared to the WT mice. In a separate cohort, mice were sacrificed on days 3 and 7 after wounding and the skin tissues were harvested for histological analysis and RNA measurements. On day 3, the mRNA expression of tumor necrossis factor (TNF)-α in the skin tissues was increased by 16-fold in the WT mice, whereas these levels were increased by 65-fold in the CIRP-/- mice. Of note on day 7, while the levels of TNF-α remained high in the WT mice, these levels were significantly decreased in the CIRP-/- mice. The histological analysis of the wounded skin tissue indicated an improvement as early as day 3 in the CIRP-/- mice, whereas in the WT mice, infiltrated immune cells were still present on day 7. On day 7 in the CIRP-/- mice, Gr-1 expression was low and CD31 expression was high, whereas in the WT mice, Gr-1 expression was high and CD31 expression was low, indicating that the CIRP-/- mice have already moved into the angiogenesis and tissue formation phase, whereas the WT mice were still in the inflammatory state. These data collectively suggest that a deficiency in CIRP accelerates the wound healing process.
Background Liver injury caused by ischemia reperfusion (I/R) during surgical procedures, such as liver resection or liver transplantation, is a major cause of liver damage and graft failure. The current method of treatment is mostly preventative (i.e., ischemic preconditioning). While a number of pharmacological modalities have been studied to reduce hepatic I/R injury, none have been entirely successful. It has been demonstrated that the administration of adrenomedullin (AM) in combination with AM-binding protein (AM/AMBP-1) exerts significant protective effects in various pathological conditions. In an effort to develop AM/AMBP-1 as a novel therapeutic for hepatic I/R injury, the present study examined the effect of a low dose of human AM, which does not induce hypotension, in combination with human AMBP-1 in a rabbit model of hepatic I/R (i.e., non-rodent species). Methods Ischemia of 70% of the liver was induced by placing a microvascular clip across the hilum of the left and median lobes for 60 min. The clip was then removed to commence reperfusion. At 15 min following clip removal (i.e., reperfusion), human AM/AMBP-1 was administered intravenously via the ear marginal vein continuously for 30 min. At 20 h, blood and tissue samples were collected for various measurements. Results The serum levels of liver enzymes (alanine aminotransferase and aspartate aminotransferase) and lactate dehydrogenase, were elevated following hepatic I/R. The administration of AM/AMBP-1 significantly decreased these levels by 58, 44, 41%, respectively. Hepatic I/R increased the direct and total bilirubin levels, whereas treatment with human AM/AMBP-1 decreased these levels by 60% and 69%, respectively. Treatment with AM/AMBP-1 also inhibited interleukin-6 gene expression by 95%. There were no changes in tumor necrosis factor-α (TNF-α) gene expression and myeloperoxidase activity (MPO), lactate and Suzuki scores after treatment. The treatment, however, reduced apoptosis post-hepatic I/R in the ischemic portion of the liver. Conclusion Additional experiments with AM and AMBP-1 alone are needed to completely interpret the experimental results in this non-rodent species of hepatic I/R injury. The present study suggests that human AM/AMBP-1 may be developed as a novel therapeutic to attenuate hepatic I/R associated inflammation and liver injury.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.