Protein S-acylation, commonly known as palmitoylation, is a reversible posttranslational modification that catalyzes the addition of a saturated lipid group, often palmitate, to the sulfhydryl group of a Cys. Palmitoylation regulates enzyme activity, protein stability, subcellular localization, and intracellular sorting. Many plant proteins are palmitoylated. However, little is known about protein S-acyl transferases (PATs), which catalyze palmitoylation. Here, we report that the tonoplast-localized PAT10 is critical for development and salt tolerance in Arabidopsis thaliana. PAT10 loss of function resulted in pleiotropic growth defects, including smaller leaves, dwarfism, and sterility. In addition, pat10 mutants are hypersensitive to salt stresses. We further show that PAT10 regulates the tonoplast localization of several calcineurin B-like proteins (CBLs), including CBL2, CBL3, and CBL6, whose membrane association also depends on palmitoylation. Introducing a C192S mutation within the highly conserved catalytic motif of PAT10 failed to complement pat10 mutants, indicating that PAT10 functions through protein palmitoylation. We propose that PAT10-mediated palmitoylation is critical for vacuolar function by regulating membrane association or the activities of tonoplast proteins.
We sought to characterize the regenerated cells, if any, when photoreceptor ablation was mostly limited to a particular cone subtype. This allowed us to uniquely assess whether the remaining cells influence specification of regenerating photoreceptors. The ability to replace lost photoreceptors via stem cell therapy holds promise for treating many retinal degenerative diseases. Zebrafish are potent for modelling this because they have robust regenerative capacity emanating from endogenous stem cells, and abundant cone photoreceptors including multiple spectral subtypes similar to human fovea. We ablated the homolog of the human S-cones, the ultraviolet-sensitive (UV) cones, and tested the hypothesis that the photoreceptors regenerating in their place take on identities matching those expected from normal cone mosaic development. We created transgenic fish wherein UV cones can be ablated by addition of a prodrug. Thus photoreceptors developed normally and only the UV cones expressed nitroreductase; the latter converts the prodrug metronidazole to a cell-autonomous neurotoxin. A significant increase in proliferation of progenitor cell populations (p<0.01) was observed when cell ablation was primarily limited to UV cones. In control fish, we found that BrdU primarily incorporated into rod photoreceptors, as expected. However the majority of regenerating photoreceptors became cones when retinal cell ablation was predominantly restricted to UV cones: a 2-fold increase in the relative abundance of cones (p = 0.008) was mirrored by a 35% decrease in rods. By primarily ablating only a single photoreceptor type, we show that the subsequent regeneration is biased towards restoring the cognate photoreceptor type. We discuss the hypothesis that, after cone death, the microenvironment formed by the remaining retinal cells may be influential in determining the identity of regenerating photoreceptors, though other interpretations are plausible. Our novel animal model provides control of ablation that will assist in identifying mechanisms required to replace cone photoreceptors clinically to restore daytime vision.
SUMMARYVacuolar sorting receptors (VSRs) are type-I integral membrane proteins that mediate biosynthetic protein traffic in the secretory pathway to the vacuole, whereas secretory carrier membrane proteins (SCAMPs) are type-IV membrane proteins localizing to the plasma membrane and early endosome (EE) or trans-Golgi network (TGN) in the plant endocytic pathway. As pollen tube growth is an extremely polarized and highly dynamic process, with intense anterograde and retrograde membrane trafficking, we have studied the dynamics and functional roles of VSR and SCAMP in pollen tube growth using lily (Lilium longiflorum) pollen as a model. Using newly cloned lily VSR and SCAMP cDNA (termed LIVSR and LISCAMP, respectively), as well as specific antibodies against VSR and SCAMP1 as tools, we have demonstrated that in growing lily pollen tubes: (i) transiently expressed GFP-VSR/GFP-LIVSR is located throughout the pollen tubes, excepting the apical clear-zone region, whereas GFP-LISCAMP is mainly concentrated in the tip region; (ii) VSRs are localized to the multivesicular body (MVB) and vacuole, whereas SCAMPs are localized to apical endocytic vesicles, TGN and vacuole; and (iii) microinjection of VSR or SCAMP antibodies and LlVSR small interfering RNAs (siRNAs) significantly reduced the growth rate of the lily pollen tubes. Taken together, both VSR and SCAMP are required for pollen tube growth, probably working together in regulating protein trafficking in the secretory and endocytic pathways, which need to be coordinated in order to support pollen tube elongation.
Klotho is a transmembrane protein expressed in the renal tubules where it acts as a permissive coreceptor for fibroblast growth factor 23 (FGF23). FGF23 signaling reduces the abundance of CYP27b1 and phosphate cotransporters NPT2a and NPT2c, leading to a decrease in 1,25(OH)2D3 synthesis and a rise in urinary phosphate excretion, respectively. Systemic or whole-nephron deletion of Klotho in mice results in renal FGF23 resistance characterized by high 1,25(OH)2D3 and phosphate levels and premature aging. Expression of Klotho is highest in the distal tubules, whereas 25OH vitamin D 1α hydroxylation and phosphate reabsorption predominantly occur in the proximal tubules. Currently, the segment-specific roles of Klotho in renal tubules are not fully understood. Here we have generated mice with Klotho specifically ablated from the proximal tubules using 3 different Cre mouse strains. All 3 models displayed impaired urinary phosphate excretion and increased abundance of NPT2a in the brush border membrane. Notably, hyperphosphatemia in knockout mice was mild or nonexistent under basal conditions but occurred upon high phosphate loading, indicating the presence of compensatory mechanisms. Effects on 1,25(OH)2D3 varied between mouse strains but were modest overall. Thus, Klotho expressed in the proximal tubules has a defined but limited role in renal phosphate handling in vivo.
The pollen tube is an excellent single-cell model system for studying cellular processes in plant cell biology. This protocol describes a detailed step-by-step procedure with optimized conditions for introducing various fluorescent reporter proteins into lily, tobacco and Arabidopsis pollen grains by means of biolistics for their transient expression and subsequent analysis in germinating pollen tubes. The whole experiment consists of four major stages: coating gold microcarriers with DNA constructs, preparation of pollen grains, transformation of plasmid DNA into pollen grains by particle delivery system and germination of bombarded pollen grains in optimized germination media to obtain pollen tubes for protein trafficking, protein localization, drug treatment and organelle dynamics analysis. This protocol takes about 4-12 h from pollen preparation to protein detection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.