Reaction of [Cu(CH(3)CN)(4)](PF(6)) and NH(4)[S(2)P(OR)(2)] in a 4:3 ratio in acetone at room temperature produces octanuclear dicationic copper complexes [Cu(8){S(2)P(OR)(2)}(6)](PF(6))(2) (R = (i)Pr, 1; Et, 3) in 81 and 83% yields, respectively. On the other hand, reaction of [Cu(CH(3)CN)(4)](PF(6)), NH(4)[S(2)P(OR)(2)], and NaBH(4) in an 8:6:1 molar ratio in THF for 1 h yields [Cu(4)(H)(mu(3)-Cu)(4){S(2)P(OR)(2)}(6)](PF(6)) (R = (i)Pr, 2a; Et, 4a) in 87 and 82% yields, respectively. In a similar reaction when NaBD(4) is used instead of NaBH(4), [Cu(4)(D)(mu(3)-Cu)(4){S(2)P(OR)(2)}(6)](PF(6)) (R = (i)Pr, 2b; Et, 4b) are obtained in 83 and 78% yields, respectively. Structural elucidations of 2a and 4a reveal the tetracapped tetrahedral Cu(8) cage with an interstitial hydride. Each of the Cu(I) centers is trigonally coordinated by three S atoms, and each of the six dithiophosphate ligands is connected to a Cu(4) butterfly, where the hinge positions are occupied by two copper atoms situated at the vertex of the central tetrahedron and the wingtips are two capping Cu atoms. The 12 S atoms out of the six ligands constitute an icosahedron around the hydride-centered tetracapped tetrahedral Cu(8) framework. Surprisingly, empty Cu(8) clusters 1 and 3 can abstract hydride (or deuteride) from NaBH(4) (or NaBD(4)) in THF to form 2a and 4a (or 2b and 4b), respectively. Apparently the cubic Cu(8) core, which is known to be formed in the reaction of Cu(I) salt and dichalcogenophosph(in)ate ligands, undergoes a tetrahedral contraction due to the strong Cu...H interactions. Interestingly, the chloride can also be replaced from the chloride-centered Cu(8) complex of [Cu(8)(Cl){S(2)P(OEt)(2)}(6)](PF(6)) by hydride (or deuteride) to form 2a and 4a (or 2b and 4b). However, the hydride- and deuteride-centered compounds 2a,b and 4a,b do not allow the guest exchange.
The first stable structure of silver(I) cluster cations [Ag(8)(mu(4)-H){Se(2)P(OR)(2)}(6)](+) [R = (i)Pr, 1; Et, 2] containing Ag(I)-hydride bridges (Ag-mu-H-Ag) in T symmetry was reported. The clusters having an interstitial hydride were composed of an octanuclear silver core in tetracapped tetrahedral geometry, which was inscribed within a Se(12) icosahedron represented by six dialkyl diselenophosphate ligands in a tetrametallic-tetraconnective (mu(2), mu(2)) bonding mode. The presence of hydride was unequivocally corroborated by both (1)H and (109)Ag NMR spectroscopies of which a nonet in the (1)H NMR spectrum for the hydride resonance coupled with a doublet peak observed in the (109)Ag NMR spectrum clearly suggests that eight silver nuclei are equivalent in the NMR time scale and a fast exchange of the positions between the vertex and capping silver atoms in solution must occur. The hypothesis was also supported by a density functional theory (DFT) investigation on a simplified model [Ag(8)(H)(Se(2)PH(2))(6)](+), which confirmed that the Ag(8)H cubic core of T(h) symmetry may not be formed as it is energetically highly unfavorable (0.67 eV less stable than the T structure).
Extended chain polymers [Ag(5){S(2)P(OEt)(2)}(4)(PF(6))](n), (1) could be converted to clusters of the type, [Ag(8)(X){S(2)P(OEt)(2)}(6)](PF(6)) [X = F (2); Cl (3); H (4)], by the addition of appropriate anions, of which [Ag(8)(H){S(2)P(OEt)(2)}(6)](+) showed a unique tetracapped-tetrahedral Ag(8) core and contained Ag-mu-H-Ag linkages.
A Tris-chelated diselenophosphato complex of bismuth, Bi[Se 2 P(OiPr) 2 ] 3 , was successfully prepared and used to obtain two separate, uniform deposits of nanostructured metal phosphate, BiPO 4 , and metal chalcogenide, Bi 2 Se 3 , in a one-step metal-organic chemical vapor deposition process. This work expands the applications of single-source precursors in a new dimension by producing two separate, uniform products from decomposition of a single-source precursor in one step. The inclusion of oxygen and phosphorus elements in the precursor molecule makes possible the simultaneous production of BiPO 4 nanowires and Bi 2 Se 3 nanoplates from the single-source precursor. The resulting BiPO 4 nanowires and Bi 2 Se 3 nanoplates show promising field emission properties, comparable to the more popular oxide semiconductor nanowires. The Bi 2 Se 3 nanoplates also exhibit a superior thermoelectric property over bulk Bi 2 Se 3 .
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.