By partially substituting the tri-valence element La with di-valence element Sr in LaOFeAs, we introduced holes into the system. For the first time, we successfully synthesized the hole-doped new superconductors (La1−xSrx)OFeAs. The maximum superconducting transition temperature at about 25 K was observed at a doping level of x = 0.13. It is evidenced by Hall effect measurements that the conduction in this type of material is dominated by hole-like charge carriers, rather than electron-like ones. Together with the data of the electron-doped system La(O1−xFx)FeAs, a generic phase diagram is depicted and is revealed to be similar to that of the cuprate superconductors.
We report the first NMR investigation of spin dynamics in the overdoped nonsuperconducting regime of Ba(Fe1-xCox)2As2 up to x=0.26. We demonstrate that the absence of interband transitions with large momentum transfer Q{AF} approximately (pi/a,0) between the hole and electron Fermi surfaces results in complete suppression of antiferromagnetic spin fluctuations for x greater than or approximately 0.15. Our experimental results provide direct evidence for a correlation between T{c} and the strength of Q{AF} antiferromagnetic spin fluctuations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.