Macrophage recruitment and pro-inflammatory differentiation are hallmarks of various diseases, including infection and sepsis. Although studies suggest that mitochondria may regulate macrophage immune responses, it remains unclear whether mitochondrial mass affects macrophage pro-inflammatory differentiation. Here, we found that lipopolysaccharide (LPS)-activated macrophages possess higher mitochondrial mass than resting cells. Therefore, this study aimed to explore the functional role and molecular mechanisms of increased mitochondrial mass in pro-inflammatory differentiated macrophages. Results show that an increase in the mitochondrial mass of macrophages positively correlates with inflammatory cytokine generation in response to LPS. RNA-seq analysis revealed that LPS promotes signal transducers and activators of transcription 2 (Stat2) and dynamin-related protein 1 (Drp1) expression, which are enriched in positive mitochondrial fission regulation. Meanwhile, knockdown or pharmacological inhibition of Drp1 blunts LPS-induced mitochondrial mass increase and pro-inflammatory differentiation. Moreover, Stat2 boosts Drp1 phosphorylation at serine 616, required for Drp1-mediated mitochondrial fission. LPS also causes Stat2-and Drp1-dependent biogenesis, which contributes to the generation of additional mitochondria. However, these mitochondria are profoundly remodeled, displaying fragmented morphology, loose cristae, reduced Δψm, and metabolic programming. Furthermore, these remodeled mitochondria shift their function from ATP synthesis to reactive oxygen species (ROS) production, which drives NFκB-dependent inflammatory cytokine transcription. Interestingly, an increase in mitochondrial mass with constitutively active phosphomimetic mutant of Drp1 (Drp1 S616E ) boosted pro-inflammatory response in macrophages without LPS stimulation. In vivo, we also demonstrated that Mdivi-1 administration inhibits LPS-induced macrophage pro-inflammatory differentiation. Importantly, we observed Stat2 phosphorylation and Drp1-dependent mitochondrial mass increase in macrophages isolated from LPS-challenged mice. In conclusion, we comprehensively demonstrate that a Stat2-Drp1 dependent mitochondrial mass increase is necessary for pro-inflammatory differentiation of macrophages. Therefore, targeting the Stat2-Drp1 axis may provide novel therapeutic approaches for treating infection and inflammatory diseases.
Sepsis, a systemic inflammatory response to infection, is the leading cause of death in the intensive care unit (ICU). Previous studies indicated that mesenchymal stromal cells (MSCs) might have therapeutic potential against sepsis. The current study was designed to investigate the effects of MSCs on sepsis and the underlying mechanisms focusing on inflammasome activation in macrophages. The results demonstrated that the bone marrow-derived mesenchymal stem cells (BMSCs) significantly increased the survival rate and organ function in cecal ligation and puncture (CLP) mice compared with the control-grouped mice. BMSCs significantly restricted NLRP3 inflammasome activation, suppressed the generation of mitochondrial ROS, and decreased caspase-1 and IL-1β activation when cocultured with bone marrow-derived macrophages (BMDMs), the effects of which could be abolished by Mito-TEMPO. Furthermore, the expression levels of caspase-1, IL-1β, and IL-18 in BMDMs were elevated after treatment with mitophagy inhibitor 3-MA. Thus, BMSCs exert beneficial effects on inhibiting NLRP3 inflammasome activation in macrophages primarily via both enhancing mitophagy and decreasing mitochondrial ROS. These findings suggest that restricting inflammasome activation in macrophages by increasing mitophagy and decreasing mitochondrial ROS might be a crucial mechanism for MSCs to combat sepsis.
Classification of gummy smile was tried first according to gingival exposure site during posed smile, then several items were measured on cephalometric radiograph to analyze the morphologic features in both sexes and further divided into subgroups. Two hundred twenty-eight adolescents with gingival display of more than 2 mm during smile were clustered according to gingival exposure site. Measurements of 18 pertinent items with great clinical concern or controversy in previous study in each groups were compared with corresponding references. Four distinctive types of gummy smile could be distinguished, and they exposed a continuous band, posterior parts, and one side or anterior part of upper gingiva, respectively. The type exposing a continuous band of upper gingiva took up the majority (200 cases, 88%) of all subjects and were chosen for further cephalometric analysis. Among the characteristic features of gummy smile, adolescents have skeletal class II relationship, vertical growth pattern, retrusive mandible, excessive anterior maxillary height, labially inclined upper incisors and upper lip, great overjet and overbite, and relatively short lip compared with anterior maxillary height. Skeletal class III relationship and horizontal growth pattern were absolutely absent. As a result, treatment planning should be adjusted according to the exposure site and craniofacial feature of each individual patient to obtain the best result.
2,3,5,4′-Tetrahydroxystilbene-2-O-β-D-glucoside (TSG), an important monomer extracted from Polygonum multiflorum, can prevent a number of inflammation associated chronic diseases. However, the mechanism involved in TSG inducing anti-inflammatory role remains unclear. As an inducible antioxidant enzyme, Heme oxygenase-1 (HO-1), is crucial for protecting the mammalian cells against adverse stimuli. Here, we found that the TSG treatment strongly induces the expression of HO-1 in an NRF2-depended manner. Meanwhile, TSG increased the mitochondrial mass through upregulation of the mitochondrial biogenesis activators (PGC-1α, NRF1, and TFAM) as well as the mitochondrial complex IV. Furthermore, TSG attenuated Lipopolysaccharide (LPS) mediated RAW264.7 cells activation and secretion of proinflammatory cytokines, including interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α). Zinc Protoporphyrin (ZnPP), a selective inhibitor of HO-1 activity, was able to attenuate TSG mediated mitochondrial biogenesis and anti-inflammatory process. Finally, we observed that LPS induced obvious mtDNA depletion and ATP deficiency, which indicated a severe damage of mitochondria. TSG restored the LPS induced mitochondrial dysfunction via activation of the mitochondrial biogenesis. ZnPP treatment markedly reversed the inhibitory effects of TSG on mitochondrial damage and oxidative stress in LPS stimulated macrophages. Taken together, these findings suggest that TSG enhances mitochondrial biogenesis and function mainly via activation the HO-1. TSG can be developed as a potential drug for treatment of inflammatory diseases.
According to numerous animal studies, adverse environmental stimuli, including physical, chemical, and biological factors, can cause low-grade chronic inflammation and subsequent tumor development. Human epidemiological evidence has confirmed the close relationship between chronic inflammation and tumorigenesis. However, the mechanisms driving the development of persistent inflammation toward tumorigenesis remain unclear. In this study, we assess the potential role of reactive oxygen species (ROS) and associated mechanisms in modulating inflammation-induced tumorigenesis. Recent reports have emphasized the cross-talk between oxidative stress and inflammation in many pathological processes. Exposure to carcinogenic environmental hazards may lead to oxidative damage, which further stimulates the infiltration of various types of inflammatory cells. In turn, increased cytokine and chemokine release from inflammatory cells promotes ROS production in chronic lesions, even in the absence of hazardous stimuli. Moreover, ROS not only cause DNA damage but also participate in cell proliferation, differentiation, and apoptosis by modulating several transcription factors and signaling pathways. We summarize how changes in the redox state can trigger the development of chronic inflammatory lesions into tumors. Generally, cancer cells require an appropriate inflammatory microenvironment to support their growth, spread, and metastasis, and ROS may provide the necessary catalyst for inflammation-driven cancer. In conclusion, ROS bridge the gap between chronic inflammation and tumor development; therefore, targeting ROS and inflammation represents a new avenue for the prevention and treatment of cancer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.