Induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) capture patient-specific genotype-phenotype relationships, as well as cell-to-cell variability of cardiac electrical activity r Computational modelling and simulation provide a high throughput approach to reconcile multiple datasets describing physiological variability, and also identify vulnerable parameter regimes r We have developed a whole-cell model of iPSC-CMs, composed of single exponential voltage-dependent gating variable rate constants, parameterized to fit experimental iPSC-CM outputs r We have utilized experimental data across multiple laboratories to model experimental variability and investigate subcellular phenotypic mechanisms in iPSC-CMs r This framework links molecular mechanisms to cellular-level outputs by revealing unique subsets of model parameters linked to known iPSC-CM phenotypes Abstract There is a profound need to develop a strategy for predicting patient-to-patient vulnerability in the emergence of cardiac arrhythmia. A promising in vitro method to address patient-specific proclivity to cardiac disease utilizes induced pluripotent stem cell-derived Divya Kernik is currently a PhD candidate in Biomedical Engineering at the University of California, Davis. She obtained a BS in Biomedical Engineering from Johns Hopkins University. The focus of her PhD work has been the development of computational methods that help to understand human-derived cardiac cells, as reported in the present study. In the future, she aims to continue to use computational modelling to address questions in cardiac physiology and pharmacology, with the underlying goal of incorporating human diversity throughout these efforts.
AimsChronic heart failure is a complex clinical syndrome with impaired myocardial contractility. In failing cardiomyocytes, decreased signalling efficiency between the L-type Ca 2+ channels (LCCs) in the plasma membrane (including transverse tubules, TTs) and the ryanodine receptors (RyRs) in the sarcoplasmic reticulum (SR) underlies the defective excitation -contraction (E-C) coupling. It is therefore intriguing to know how the LCC -RyR signalling apparatus is remodelled in human heart failure. Methods and resultsStereological analysis of transmission electron microscopic images showed that the volume densities and the surface areas of TTs and junctional SRs were both decreased in heart failure specimens of dilated cardiomyopathy (DCM) and ischaemic cardiomyopathy (ICM). The TT-SR junctions were reduced by 60%, with the remaining displaced from the Z-line areas. Moreover, the spatial span of individual TT -SR junctions was reduced by 17% in both DCM and ICM tissues. In accordance with these remodelling, junctophilin-2 (JP2), a structural protein anchoring SRs to TTs, was down-regulated, and miR-24, a microRNA that suppresses JP2 expression, was up-regulated in both heart failure tissues. ConclusionHuman heart failure of distinct causes shared similar physical uncoupling between TTs and SRs, which appeared attributable to the reduced expression of JP2 and increased expression of miR-24. Therapeutic strategy against JP2 down-regulation would be expected to protect patients from cardiac
Pyroptosis is a recently characterized inflammatory form of programmed cell death that is thought to be involved in the pathogenesis of perioperative neurocognitive disorders (PND). Elamipretide (SS-31), a mitochondrial-targeted peptide with multiple pharmacological properties, including anti-inflammatory activity, has been demonstrated to protect against many neurological diseases. However, the effect of elamipretide on pyroptosis in PND has not been studied. We established an animal model of PND by performing an exploratory laparotomy on mice under isoflurane anesthesia and examined the effects of elamipretide on cognitive function, synaptic integrity, neuroinflammation, mitochondrial function, and signaling controlling pyroptosis. Our results showed that anesthesia and surgery caused mitochondrial dysfunction and abnormal morphology, activation of canonical nod-like receptor pyrin domain-containing 3 (NLRP3) inflammasome-caspase-1 dependent pyroptosis, and downregulation of synaptic integrity-related proteins in the hippocampus in aged mice, thus leading to learning and memory deficits in behavioral tests. Remarkably, treatment with the mitochondrial-targeted peptide elamipretide not only had protective effects against mitochondrial dysfunction but also attenuated surgery-induced pyroptosis and cognitive deficits. Our results provide a promising strategy for the treatment of PND involving mitochondrial dysfunction and pyroptosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.