Motor functions are supported through functional integration across the extended motor system network. Individuals following stroke often show deficits on motor performance requiring coordination of multiple brain networks; however, the assessment of connectivity patterns after stroke was still unclear. This study aimed to investigate the changes in intra- and inter-network functional connectivity (FC) of multiple networks following stroke and further correlate FC with motor performance. Thirty-three left subcortical chronic stroke patients and 34 healthy controls underwent resting-state functional magnetic resonance imaging. Eleven resting-state networks were identified via independent component analysis (ICA). Compared with healthy controls, the stroke group showed abnormal FC within the motor network (MN), visual network (VN), dorsal attention network (DAN), and executive control network (ECN). Additionally, the FC values of the ipsilesional inferior parietal lobule (IPL) within the ECN were negatively correlated with the Fugl-Meyer Assessment (FMA) scores (hand + wrist). With respect to inter-network interactions, the ipsilesional frontoparietal network (FPN) decreased FC with the MN and DAN; the contralesional FPN decreased FC with the ECN, but it increased FC with the default mode network (DMN); and the posterior DMN decreased FC with the VN. In sum, this study demonstrated the coexistence of intra- and inter-network alterations associated with motor-visual attention and high-order cognitive control function in chronic stroke, which might provide insights into brain network plasticity following stroke.
Gestational diabetes mellitus (GDM) is conventionally confirmed with oral glucose tolerance test (OGTT) in 24 to 28 weeks of gestation, but it is still uncertain whether it can be predicted with secondary use of electronic health records (EHRs) in early pregnancy. To this purpose, the cost-sensitive hybrid model (CSHM) and five conventional machine learning methods are used to construct the predictive models, capturing the future risks of GDM in the temporally aggregated EHRs. The experimental data sources from a nested case-control study cohort, containing 33,935 gestational women in West China Second Hospital. After data cleaning, 4,378 cases and 50 attributes are stored and collected for the data set. Through selecting the most feasible method, the cost parameter of CSHM is adapted to deal with imbalance of the dataset. In the experiment, 3940 samples are used for training and the rest 438 samples for testing. Although the accuracy of positive samples is barely acceptable (62.16%), the results suggest that the vast majority (98.4%) of those predicted positive instances are real positives. To our knowledge, this is the first study to apply machine learning models with EHRs to predict GDM, which will facilitate personalized medicine in maternal health management in the future.
Long-segment defects remain a major problem in clinical treatment of tubular tissue reconstruction. The design of tubular scaffold with desired structure and functional properties suitable for tubular tissue regeneration remains a great challenge in regenerative medicine. Here, we present a reliable method to rapidly fabricate tissueengineered tubular scaffold with hierarchical structure via 4axis printing system. The fabrication process can be adapted to various biomaterials including hydrogels, thermoplastic materials and thermosetting materials. Using polycaprolactone (PCL) as an example, we successfully fabricated the scaffolds with tunable tubular architecture, controllable mesh structure, radial elasticity, good flexibility, and luminal patency. As a preliminary demonstration of the applications of this technology, we prepared a hybrid tubular scaffold via the combination of the 4-axis printed elastic poly(glycerol sebacate) (PGS) bio-spring and electrospun gelatin nanofibers. The scaffolds seeded with chondrocytes formed tubular mature cartilage-like tissue both via in vitro culture and subcutaneous implantation in the nude mouse, which showed great potential for tracheal cartilage reconstruction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.