Deep learning has been applied in intelligent fault diagnosis of machines since it trains deep neural networks to simultaneously learn features and recognize faults. In the intelligent fault diagnosis methods based on deep learning, feature learning and fault recognition are achieved by solving a multi-class classification problem. The multi-class classification, however, has not considered the relationships of fault labels, leading to two weaknesses of these methods. One is that it cannot ensure to learn the correlated features for related faults and the other is that it cannot handle missing label problem. To overcome these weaknesses, we introduce a concept of multi-label classification into intelligent fault diagnosis and propose a deep multilabel learning framework called multi-label convolutional neural network (MLCNN). MLCNN builds the relationship between the labels, and thus it is able to learn the correlated features from mechanical vibration signals and be well trained using the samples with missing labels. A motor bearing diagnosis case and a compound fault diagnosis case are used to verify the proposed method, respectively. The results show that the relationships between features are learned by MLCNN, and the classification accuracies of MLCNN are higher than traditional methods when the missing label problem occurs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.