Cooperative hunting is a typical task that reflects the intelligence level of a swarm. For the complex underwater weak information environment with obstacles, a problem description of the multi-autonomous underwater vehicle (AUV) cooperative hunting task is given, considering the influencing factors, including underwater obstacles, AUV sensing interaction range, and target escape strategy. A hybrid adaptive preference method based on improved artificial potential fields (HAP-IAPF) is proposed. Then the strategies of obstacle avoidance and hunting are designed separately according to the task requirements. The adaptive weight control unit is used to adjust the preference strategy. The multi-AUV cooperative hunting in dynamic obstacle underwater environments under weakly connected conditions are achieved. In order to prove the effectiveness of the proposed algorithm, simulation results compared with the traditional artificial potential field method and the optimized artificial potential field method are given in this paper. The results show that the proposed method is robust and effective in different environments.
(1) Background: Because ecosystem degradation has become a global phenomenon which seriously affects the health of natural ecosystems and human well-being, restoration of degraded ecosystems has attracted increasing attention. However, many of the methods used in current ecological restoration work have rarely combined ecological restoration practices with the quantitative goal of restoring ecosystem function. (2) Methods: In this study, based on the conceptual framework of response-effect traits and Community Assembly by Trait Selection model (CATS model), a restoration strategy for a degraded abandoned mine in Wuhai City, China has been provided. This restoration strategy connected the ecosystem function targets to the appropriate recovery species and their required abundances. (3) Results: The results showed that a relative abundance ratio of 8:2 for S. grandis to B. dasyphylla was best for a shady slope, while a 6:4 ratio of K. tragus to B. dasyphylla was best for repair on a sunny slope of the degraded mine area. (4) Conclusion: This study provides a typical example of applying ecological theory in practice that will be useful for current and future studies and applications. This approach will ensure that governance efforts to restore degraded ecosystems are effective and efficient.
Generally, the high levels of biodiversity found in natural ecosystems have positive effects on ecosystem functions (EFs), though the intensity and direction of such effects can vary. This is associated with the impacts of other EF-driving factors. In this study, the factors that affect biodiversity-ecosystem functioning (BEF) are reviewed and summarized, and current gaps in the research on the effects of these factors on BEF are discussed. Moreover, a new conceptual model, the generating-presentation model, accounting for links between effect factors and EFs, is built to provide a systematic means of understanding how different factors affect BEF. The model shows that the correlation between biodiversity and EFs can be described as involving a cascade process, while the separation of biodiversity and EFs from ecosystems without considering integrated features is not appropriate for BEF-related research. The generating-presentation model can comprehensively reflect the effects of different factors on EFs and thus has major theoretical and applied implications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.