The present study identified the threshold concentration of xylo-oligosaccharides (XOS) that resulted in minimal quality changes (rheology, color, water activity, pH, and total soluble solids) in strawberry puree. Optimization of XOS concentration to 5% (w/w) did not significantly alter the quality attributes of the strawberry puree. In addition, this study also monitored the rheological properties, composition (total soluble solids, total phenolic content, flavonoids, and tannin content), physicochemical attributes (color, water activity, pH) and sensorial properties of XOS-enhanced (5%, w/w) strawberry puree after thermal processing (HTST: 75 C, 15s and UHT: 121 C, 2s) and storage after 1, 15, and 36 days at 4 C and 55 C. At 5% (w/w) concentration, the addition of XOS increased consumer preference without significantly compromising quality attributes. Thermally treated strawberry puree (HTST and UHT) were less preferred by consumers than fresh puree. However, all strawberry samples incorporated with XOS (5%, w/w) received statistically higher scores than the samples without the XOS addition. Thus, the proposed supplementation of strawberry puree with XOS could be a viable solution to increase consumers' dietary fiber intake with little need for behavioral changes.
The color change resulting from anthocyanin and iron co-pigmentation has been a significant challenge for the food industry in the development of many iron-fortified foods. This present study aims to establish a quantitative model to predict the degree of color stability in the presence of dissolved iron using surface-enhanced Raman spectroscopic (SERS) spectra. The SERS spectra of anthocyanin extracts from seven different plant sources were measured and analyzed by principal component analysis (PCA). Discrimination among different sources of anthocyanin was observed in the PCA plot. Different stability indexes, obtained by measuring both the color intensity stability and color hue stability of each sample, were established based on UV–vis analysis of anthocyanin at pH 3 and 6 with and without ferric sulfate. Partial least square (PLS) regression models were applied to establish the correlation between SERS spectra and stability indexes. The best PLS model was built based on the stability index calculated from the bathochromic shift (UV–vis spectral range: 380–750 nm) in pH3 buffer and the SERS spectra, achieving a root mean square error of prediction (RMSEP) of 2.16 nm and a correlation coefficient value (R2) of 0.98. In conclusion, the present study developed a feasible approach to predict the stability of anthocyanin colorants against iron co-pigmentation. The developed method and models can be used for fast screenings of raw ingredients in iron-fortified food products.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.