In aquaculture ponds, wireless sensor networks (WSNs) with uneven temperature distribution and low collection efficiency may lead to poor monitoring effects. To improve the performance of temperature monitoring, a high-precision fusion strategy for a hierarchical WSN is proposed. In the bottom layer, the temperature data collected by the sensors are preprocessed by an improved unscented Kalman filter. In the middle layer, each cluster head sensor, as a local fusion center, is used to fuse the data collected from the sensors by a sequential analysis and fast inverse covariance intersection (ICI) algorithm. In the top layer, a global fusion center is utilized to fuse the temperature data from the middle layer to reflect the global temperature by an improved seagull algorithm to optimize the extreme learning machine (ELM) algorithm. Through calculation and simulation, the results show that the fusion strategy not only reduces external interference but also improves the accuracy of global optimal temperature state estimation while ensuring the stability and accuracy of data fusion.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.