Background Recent genome-wide association studies (GWASs) have revealed the polygenic nature of psychiatric disorders and discovered a few of single-nucleotide polymorphisms (SNPs) associated with multiple psychiatric disorders. However, the extent and pattern of pleiotropy among distinct psychiatric disorders remain not completely clear. Methods We analyzed 14 psychiatric disorders using summary statistics available from the largest GWASs by far. We first applied the cross-trait linkage disequilibrium score regression (LDSC) to estimate genetic correlation between disorders. Then, we performed a gene-based pleiotropy analysis by first aggregating a set of SNP-level associations into a single gene-level association signal using MAGMA. From a methodological perspective, we viewed the identification of pleiotropic associations across the entire genome as a high-dimensional problem of composite null hypothesis testing and utilized a novel method called PLACO for pleiotropy mapping. We ultimately implemented functional analysis for identified pleiotropic genes and used Mendelian randomization for detecting causal association between these disorders. Results We confirmed extensive genetic correlation among psychiatric disorders, based on which these disorders can be grouped into three diverse categories. We detected a large number of pleiotropic genes including 5884 associations and 2424 unique genes and found that differentially expressed pleiotropic genes were significantly enriched in pancreas, liver, heart, and brain, and that the biological process of these genes was remarkably enriched in regulating neurodevelopment, neurogenesis, and neuron differentiation, offering substantial evidence supporting the validity of identified pleiotropic loci. We further demonstrated that among all the identified pleiotropic genes there were 342 unique ones linked with 6353 drugs with drug-gene interaction which can be classified into distinct types including inhibitor, agonist, blocker, antagonist, and modulator. We also revealed causal associations among psychiatric disorders, indicating that genetic overlap and causality commonly drove the observed co-existence of these disorders. Conclusions Our study is among the first large-scale effort to characterize gene-level pleiotropy among a greatly expanded set of psychiatric disorders and provides important insight into shared genetic etiology underlying these disorders. The findings would inform psychiatric nosology, identify potential neurobiological mechanisms predisposing to specific clinical presentations, and pave the way to effective drug targets for clinical treatment.
Observational studies showed an inverse association between birth weight and chronic kidney disease (CKD) in adulthood existed. However, whether such an association is causal remains fully elusive. Moreover, none of prior studies distinguished the direct fetal effect from the indirect maternal effect. Herein, we aimed to investigate the causal relationship between birth weight and CKD and to understand the relative fetal and maternal contributions. Meta-analysis (n = ~22 million) showed that low birth weight led to ~83% (95% confidence interval [CI] 37–146%) higher risk of CKD in late life. With summary statistics from large scale GWASs (n = ~300 000 for birth weight and ~481 000 for CKD), linkage disequilibrium score regression demonstrated birth weight had a negative maternal, but not fetal, genetic correlation with CKD and several other kidney-function related phenotypes. Furthermore, with multiple instruments of birth weight, Mendelian randomization showed there existed a negative fetal casual association (OR = 1.10, 95% CI 1.01–1.16) between birth weight and CKD; a negative but non-significant maternal casual association (OR = 1.09, 95% CI 0.98–1.21) was also identified. Those associations were robust against various sensitivity analyses. However, no maternal/fetal casual effects of birth weight were significant for other kidney-function related phenotypes. Overall, our study confirmed the inverse association between birth weight and CKD observed in prior studies, and further revealed the shared maternal genetic foundation between low birth weight and CKD, and the direct fetal and indirect maternal causal effects of birth weight may commonly drive this negative relationship.
Standard genome-wide association studies (GWASs) rely on analyzing a single trait at a time. However, many human phenotypes are complex and composed by multiple correlated traits. Here we introduce C-GWAS, a method for combining GWAS summary statistics of multiple potentially correlated traits. Extensive computer simulations demonstrated increased statistical power of C-GWAS compared to the minimal p-values of multiple single-trait GWASs (MinGWAS) and the current state-of-the-art method for combining single-trait GWASs (MTAG). Applying C-GWAS to a meta-analysis dataset of 78 single trait facial GWASs from 10,115 Europeans identified 56 study-wide suggestively significant loci with multi-trait effects on facial morphology of which 17 are novel loci. Using data from additional 13,622 European and Asian samples, 46 (82%) loci, including 9 (53%) novel loci, were replicated at nominal significance with consistent allele effects. Functional analyses further strengthen the reliability of our C-GWAS findings. Our study introduces the C-GWAS method and makes it available as computationally efficient open-source R package for widespread future use. Our work also provides insights into the genetic architecture of human facial appearance.
Activation of hepatic stellate cells reportedly contributes to progression of hepatocellular carcinoma (HCC). Herein, we use quantitative proteomics and ingenuity pathway analysis to show that transglutaminase 2 (TGM2) is upregulated in the course of activated hepatic stellate cells promoting epithelial-mesenchymal transition (EMT) in HCC-derived cells both in vivo and in vitro. Mechanistically, activated hepatic stellate cells promote TGM2 upregulation in HCC cells through inflammatory signalling; and TGM2-induced depletion of von Hippel-Lindau (VHL) protein, a key molecule in the degradation of hypoxia inducible factor-1a (HIF-1a) under normoxia, then causes HIF-1a to accumulate, thereby producing a pseudohypoxic state that promotes EMT in HCC cells. These findings suggest that the promotion of EMT in HCC cells by activated hepatic stellate cells is mediated by pseudohypoxia induced via TGM2/VHL/HIF-1a pathway.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.