Background Recent genome-wide association studies (GWASs) have revealed the polygenic nature of psychiatric disorders and discovered a few of single-nucleotide polymorphisms (SNPs) associated with multiple psychiatric disorders. However, the extent and pattern of pleiotropy among distinct psychiatric disorders remain not completely clear. Methods We analyzed 14 psychiatric disorders using summary statistics available from the largest GWASs by far. We first applied the cross-trait linkage disequilibrium score regression (LDSC) to estimate genetic correlation between disorders. Then, we performed a gene-based pleiotropy analysis by first aggregating a set of SNP-level associations into a single gene-level association signal using MAGMA. From a methodological perspective, we viewed the identification of pleiotropic associations across the entire genome as a high-dimensional problem of composite null hypothesis testing and utilized a novel method called PLACO for pleiotropy mapping. We ultimately implemented functional analysis for identified pleiotropic genes and used Mendelian randomization for detecting causal association between these disorders. Results We confirmed extensive genetic correlation among psychiatric disorders, based on which these disorders can be grouped into three diverse categories. We detected a large number of pleiotropic genes including 5884 associations and 2424 unique genes and found that differentially expressed pleiotropic genes were significantly enriched in pancreas, liver, heart, and brain, and that the biological process of these genes was remarkably enriched in regulating neurodevelopment, neurogenesis, and neuron differentiation, offering substantial evidence supporting the validity of identified pleiotropic loci. We further demonstrated that among all the identified pleiotropic genes there were 342 unique ones linked with 6353 drugs with drug-gene interaction which can be classified into distinct types including inhibitor, agonist, blocker, antagonist, and modulator. We also revealed causal associations among psychiatric disorders, indicating that genetic overlap and causality commonly drove the observed co-existence of these disorders. Conclusions Our study is among the first large-scale effort to characterize gene-level pleiotropy among a greatly expanded set of psychiatric disorders and provides important insight into shared genetic etiology underlying these disorders. The findings would inform psychiatric nosology, identify potential neurobiological mechanisms predisposing to specific clinical presentations, and pave the way to effective drug targets for clinical treatment.
Integration of expression quantitative trait loci (eQTL) into genome-wide association studies (GWASs) is a promising manner to reveal functional roles of associated single-nucleotide polymorphisms (SNPs) in complex phenotypes and has become an active research field in post-GWAS era. However, how to efficiently incorporate eQTL mapping study into GWAS for prioritization of causal genes remains elusive. We herein proposed a novel method termed as Mixed transcriptome-wide association studies (TWAS) and mediated Variance estimation (MTV) by modeling the effects of cis-SNPs of a gene as a function of eQTL. MTV formulates the integrative method and TWAS within a unified framework via mixed models and therefore includes many prior methods/tests as special cases. We further justified MTV from another two statistical perspectives of mediation analysis and two-stage Mendelian randomization. Relative to existing methods, MTV is superior for pronounced features including the processing of direct effects of cis-SNPs on phenotypes, the powerful likelihood ratio test for assessment of joint effects of cis-SNPs and genetically regulated gene expression (GReX), two useful quantities to measure relative genetic contributions of GReX and cis-SNPs to phenotypic variance, and the computationally efferent parameter expansion expectation maximum algorithm. With extensive simulations, we identified that MTV correctly controlled the type I error in joint evaluation of the total genetic effect and proved more powerful to discover true association signals across various scenarios compared to existing methods. We finally applied MTV to 41 complex traits/diseases available from three GWASs and discovered many new associated genes that had otherwise been missed by existing methods. We also revealed that a small but substantial fraction of phenotypic variation was mediated by GReX. Overall, MTV constructs a robust and realistic modeling foundation for integrative omics analysis and has the advantage of offering more attractive biological interpretations of GWAS results.
Background: Neurodegenerative diseases (NDDs) are the leading cause of disability worldwide while their metabolic pathogenesis is unclear. Genome-wide association studies (GWASs) offer an unprecedented opportunity to untangle the relationship between metabolites and NDDs.Methods: By leveraging two-sample Mendelian randomization (MR) approaches and relying on GWASs summary statistics, we here explore the causal association between 486 metabolites and five NDDs including Alzheimer’s Disease (AD), amyotrophic lateral sclerosis (ALS), frontotemporal dementia (FTD), Parkinson’s disease (PD), and multiple sclerosis (MS). We validated our MR results with extensive sensitive analyses including MR-PRESSO and MR-Egger regression. We also performed linkage disequilibrium score regression (LDSC) and colocalization analyses to distinguish causal metabolite-NDD associations from genetic correlation and LD confounding of shared causal genetic variants. Finally, a metabolic pathway analysis was further conducted to identify potential metabolite pathways.Results: We detected 164 metabolites which were suggestively associated with the risk of NDDs. Particularly, 2-methoxyacetaminophen sulfate substantially affected ALS (OR = 0.971, 95%CIs: 0.961 ∼ 0.982, FDR = 1.04E-4) and FTD (OR = 0.924, 95%CIs: 0.885 ∼ 0.964, FDR = 0.048), and X-11529 (OR = 1.604, 95%CIs: 1.250 ∼ 2.059, FDR = 0.048) and X-13429 (OR = 2.284, 95%CIs: 1.457 ∼ 3.581, FDR = 0.048) significantly impacted FTD. These associations were further confirmed by the weighted median and maximum likelihood methods, with MR-PRESSO and the MR-Egger regression removing the possibility of pleiotropy. We also observed that ALS or FTD can alter the metabolite levels, including ALS and FTD on 2-methoxyacetaminophen sulfate. The LDSC and colocalization analyses showed that none of the identified associations could be driven by genetic correlation or confounding by LD with common causal loci. Multiple metabolic pathways were found to be involved in NDDs, such as “urea cycle” (P = 0.036), “arginine biosynthesis” (P = 0.004) on AD and “phenylalanine, tyrosine and tryptophan biosynthesis” (P = 0.046) on ALS.Conclusion: our study reveals robust bidirectional causal associations between servaral metabolites and neurodegenerative diseases, and provides a novel insight into metabolic mechanism for pathogenesis and therapeutic strategies of these diseases.
Background Previous studies demonstrated a positive relationship between birthweight and breast cancer; however, inconsistent, sometimes even controversial, observations also emerged, and the nature of such relationship remains unknown. Methods Using summary statistics of birthweight and breast cancer, we assessed the fetal/maternal-specific genetic correlation between them via LDSC and prioritized fetal/maternal-specific pleiotropic genes through MAIUP. Relying on summary statistics we conducted Mendelian randomization (MR) to evaluate the fetal/maternal-specific origin of causal relationship between birthweight, age of menarche, age at menopause and breast cancer. Results With summary statistics we identified a positive genetic correlation between fetal-specific birthweight and breast cancer (rg = 0.123 and P = 0.013) as well as a negative but insignificant correlation between maternal-specific birthweight and breast cancer (rg = − 0.068, P = 0.206); and detected 84 pleiotropic genes shared by fetal-specific birthweight and breast cancer, 49 shared by maternal-specific birthweight and breast cancer. We also revealed fetal-specific birthweight indirectly influenced breast cancer risk in adulthood via the path of age of menarche or age at menopause in terms of MR-based mediation analysis. Conclusion This study reveals that shared genetic foundation and causal mediation commonly drive the connection between the two traits, and that fetal/maternal-specific birthweight plays substantially distinct roles in such relationship. However, our work offers little supportive evidence for the fetal origins hypothesis of breast cancer originating in utero.
Cardiovascular diseases (CVDs) remain the main cause of morbidity and mortality worldwide. The pathological mechanism and underlying biological processes of these diseases with metabolites remain unclear. In this study, we conducted a two-sample Mendelian randomization (MR) analysis to evaluate the causal effect of metabolites on these diseases by making full use of the latest GWAS summary statistics for 486 metabolites and six major CVDs. Extensive sensitivity analyses were implemented to validate our MR results. We also conducted linkage disequilibrium score regression (LDSC) and colocalization analysis to investigate whether MR findings were driven by genetic similarity or hybridization between LD and disease-associated gene loci. We identified a total of 310 suggestive associations across all metabolites and CVDs, and finally obtained four significant associations, including bradykinin, des-arg(9) (odds ratio [OR] = 1.160, 95% confidence intervals [CIs]: 1.080–1.246, false discovery rate [FDR] = 0.022) on ischemic stroke, N-acetylglycine (OR = 0.946, 95%CIs: 0.920–0.973, FDR = 0.023), X-09026 (OR = 0.845, 95%CIs: 0.779–0.916, FDR = 0.021) and X-14473 (OR = 0.938, 95%CIs = 0.907–0.971, FDR = 0.040) on hypertension. Sensitivity analyses showed that these causal associations were robust, the LDSC and colocalization analyses demonstrated that the identified associations were unlikely confused by LD. Moreover, we identified 15 important metabolic pathways might be involved in the pathogenesis of CVDs. Overall, our work identifies several metabolites that have a causal relationship with CVDs, and improves our understanding of the pathogenesis and treatment strategies for these diseases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.