Polarimetric synthetic aperture radar (PolSAR) can obtain fully polarimetric information, which provides chances to better understand target scattering mechanisms. Ship detection is an important application of PolSAR and a number of scattering mechanism-based ship detection approaches have been established. However, the backscattering of manmade targets including ships is sensitive to the relative geometry between target orientation and radar line of sight, which makes ship detection still challenging. This work aims at mitigating this issue by target scattering diversity mining and utilization in polarimetric rotation domain with the interpretation tools of polarimetric coherence and correlation pattern techniques. The core idea is to find an optimal combination of polarimetric rotation domain features which shows the best potential to discriminate ship target and sea clutter pixel candidates. With the Relief method, six polarimetric rotation domain features derived from the polarimetric coherence and correlation patterns are selected. Then, a novel ship detection method is developed thereafter with these optimal features and the support vector machine (SVM) classifier. The underlying physics is that ship detection is equivalent to ship and sea clutter classification after the ocean and land partition. Four kinds of spaceborne PolSAR datasets from Radarsat-2 and GF-3 are used for comparison experiments. The superiority of the proposed detection methodology is clearly demonstrated. The proposed method achieves the highest figure of merit (FoM) of 99.26% and 100% for two Radarsat-2 datasets, and of 95.45% and 99.96% for two GF-3 datasets. Specially, the proposed method shows better performance to detect inshore dense ships and reserve the ship structure.
Polarimetric synthetic aperture radar (PolSAR) is an important sensor for earth observation. Multi-temporal PolSAR images obtained by successive observations of the region of interest contain rich polarimetric–temporal–spatial information of the land covers, which has wide applications. Speckle filtering becomes a necessary pre-processing for many subsequent applications. Currently, it is common to filter multi-temporal PolSAR data by directly using a speckle filter developed for single SAR or PolSAR data. The cross-correlation between different time series contains rich information in multi-temporal PolSAR images. How to utilize complete polarimetric–temporal–spatial information becomes a large challenge to achieve more satisfied performances of speckle reduction and details preservation simultaneously. This work dedicates to this issue and develops a novel speckle filtering approach for multi-temporal PolSAR data by multi-dimensional information fusion. The core idea is to establish an adaptive and efficient strategy of similar pixel selection based on the similarity test of multi-temporal polarimetric covariance matrices. This similar pixel selection scheme fuses the complete information of multi-temporal PolSAR data. The sensitivity of the proposed scheme is demonstrated with several typical and challenging texture patterns. Then, an adaptive speckle filter is established specifically for multi-temporal PolSAR data. Intensive comparison studies are carried out with airborne UAVSAR datasets and spaceborne ALOS/PALSAR datasets. Quantitative investigations in terms of the equivalent number of looks (ENL) and the figure of merit (FOM) indexes demonstrate and validate the superiority of the proposed method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.